
www.manaraa.com

c© 2010 Matthew Aloysius Ralph



www.manaraa.com

L1-ADAPTIVE CONTROL FOR ANESTHESIA DELIVERY

BY

MATTHEW ALOYSIUS RALPH

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Systems & Entrepreneurial Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Adviser:

Associate Professor Carolyn Beck



www.manaraa.com

ABSTRACT

In this paper, we discuss the first application of recently developed L1-adaptive
control methods for the closed-loop control of anesthesia delivery during surgery.
Our initial objective, described herein, is to design controllers that are robust to
inter-patient variability, such that patients follow a prespecified Bispectral Index
(BIS) profile. The controllers are then evaluated on their ability to reject the
disturbances effects on the patients’ BIS trajectory that arise during the course
of surgery. The controllers are designed using identification-based models con-
structed using clinical trial data. Two different L1-adaptive control schemes,
a state-feedback scheme and an output-feedback scheme, will be evaluated and
compared in terms of tracking performance, amount of anesthesia used, and ro-
bustness to interpatient variability.
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CHAPTER 1

INTRODUCTION

During surgery, the anesthesiologist continuously monitors and adjusts the deliv-
ery of anesthesia to the patient in an attempt to maintain a desired level of sedation,

analgesia and muscle relaxation. Concurently, the anesthesiologist maintains pa-
tient ventilation parameters and monitors cardiovascular and respiratory functions
such as heart rate (HR), blood pressure (BP), oxygen saturation and end-tidal
(exhaled) carbon dioxide (CO2) levels. Invasive montitoring is sometimes used
by attending anesthesiologists to directly measure not only arterial blood pressure
(ABP), but right-heart filling pressures (CVP), left-heart filling pressures (PCWP),
and pulmonary arterial pressures. Cardiac output (CO) may be measured by ther-
modilation methods and then used to derive systemic vascular resistance (SVR),
pulmonary vascular resistance (PVR) and a host of other cardiac performance
measures. Additionally, intra-operative blood samples are often taken and used
by the anesthesiologist to observe gas concentrations, blood-sugar levels, elec-
trolyte concentrations and coagulation parameters. In short, the anesthesiologist
performs an extremely complex role, namely, that of a multivariable feedback
controller. A common long term research goal in this area is thus to incorporate
partially automated anesthesia delivery into the process, allowing the anesthesiol-
ogist to concentrate on urgent safety-critical events that arise during surgery.

In order to implement model-based feedback control of anesthesia delivery, two
primary needs are (1) adequate and appropriate means of sensing the patient’s
level of sedation, analgesia and muscle relaxation, and (2) mathematical models
capturing the patient response to anesthetic agents. Over the past two decades,
the bispectral index (BIS), a statistical index based on phase and frequency rela-
tions between the component frequencies in EEG recordings, has found signifi-
cant acceptance as a measure of sedation level (see [1, 2, 3] and the references
therein). The adequacy and extent of muscle relaxation or neuromuscular block-

ade (NMB) can be evaluated effectively using different modes of electrical stim-
ulation: single-twitch mode (i.e., a single supramaximal electrical stimulus pulse)
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is useful after sedative agents have been administered to the patient but prior to
the administration of muscle relaxants; train-of-four (TOF) modes (i.e., four spra-
maximal electrical stimuli) are useful to determine readiness for intubation and
throughout surgery to evaluate proper maintanence of adequate NMB levels; and
TOF or double-burst stimulation modes are useful for assessing recovery from
NMB agents. Surface electrodes and/or piezoelectric sensors are used to measure
patient response to such electrical stimuli [4, 5]. Whereas the means and methods
noted above for establishing and monitoring adequate sedation and NMB levels
are by now fairly well-accepted, there is no standardized or generally accepted
method for determining the state of analgesia at this time. Under the administra-
tion of sedatives, analgesia is continually influenced by external stimuli and the
administration of analgesic drugs, and interaction, or synergy, between analgesics
and sedatives is, for the most part, unavoidable. Some common anesthetic drugs
are propofol, isoflurane, fentanyl, and remifentanil. In our studies, the anesthetic
agent is the drug isoflurane. While sedated, the patient experiences a variety of
external stimuli that affect his or her vitals. These include incisions, insertion
of the laryngal mask, jostling of the patient, and sutures. Autonomic reactions,
such as tachycardia, hypertension, sweating and lacrimation, are typically consid-
ered signs of inadequate analgesia. Autonomic monitoring techniques, such as the
analysis of heart rate variability, laser Doppler flowmetry, phlethysmographically
derived indices (i.e., pinching in the webbing between the fingers) and the pupil-
lary light reflex, may help to quantitate reactions of the autonomic nervous system,
but no verified sensing-metric combination has yet been established. In this pa-
per, the main focus of our discussion will be on controlling the level of sedation

via automated feedback methods, in particular implementing novel L1-adaptive
control techniques. We want the anesthesiologist to be able to set a BIS refer-
ence trajectory for the patient while undergoing surgery and have the controller
maintain that sedation level automatically.

Most of our studies have utilized clinical trial data where the anesthesiologist
used isoflurane and the disturbances the patient experienced were laryngal mask
insertion and removal (LMA), squeezing of the trapezius and yelling at the pa-
tient (EVAL), and small electrical stimulation (EP). Our long term goals include
extending these methods to the mutli-input multi-output (MIMO) case described
above.

Our initial objective, described herein, is to design a controller such that pa-
tients under anesthesia follow a prespecified BIS profile and, simultaneously, cer-

2
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tain vital signs are maintained in a safe range, ensuring that the proper level of
sedation is maintained throughout the surgery without putting the patient at risk.
The BIS value is a single dimensionless number ranging from 0 to 100, where 0
corresponds to a silent EEG, and 100 corresponds to a patient being fully awake
and aware. A BIS value between 60 and 40 is considered a viable level for general
anesthesia, where the patient is not aware and surgery can be performed [6]. The
manner in which the BIS level of any patient responds to the infusion and/or inspi-
ration of anesthetic agents is not linear. In fact, the standard modeling paradigm
that commonly has been used to describe the relationships between anesthetic in-
puts and patient outputs (or effects) is that of compartment models, which consist
of a linear time-invariant (LTI) system cascaded with a static nonlinearity.

More precisely, pharmacokinetic (PK) compartment models are widely used as
a means of predicting the disposition of drug in the body, by modeling the simul-
taneous diffusion of drug through body tissues and the flow of drug in blood. Most
drugs are characterized by PK models containing a central compartment, which
typically has a drug concentration corresponding to that of the blood, and periph-
eral compartments that represent groupings of internal organs and tissues of the
body; these models form the LTI system. A theoretical effect compartment is then
added to capture the concentration-to-effect relationship. The effect compartment
typically consists of a static nonlinearity plus an additional first order LTI system
that reflects the time-lag in the patient response to anesthesia, and is frequently
referred to as a pharmacodynamic (PD) model (see [7, 8, 9, 10, 11] for details).
The resulting (grey box) mathematical models are inherently single-input single-
output (SISO) and consist of a system of ordinary differential equations plus a
nonlinear function, representing the relations between the drug input function, the
concentration of drug in the various compartments, and the effect of the drug on
specific patient endpoints. As these models are strictly SISO, they are incapable
of capturing the effects of disturbances, drug synergies, or coupling among effects
in the human body.

Alternatively, in more recent previous work it has been shown that patient re-
sponse to anesthesia can be adequately captured by multivariable piecewise-linear
models, with one linear model capturing patient response around an ”awake”
equilibrium state, and another linear model capturing patient response around a
”sedated” equilibrium state [12, 13]. These models incorporate external stimuli
inputs and certain vital sign outputs. In our current work, we derive a set of mod-
els that correspond to patient response to anesthesia and external stimuli in an

3
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”awake” state, and in a ”sedated” state, respectively, for seven different patients’
sets of data. Using these models, in this thesis we discuss control synthesis and
simulation results using the recent L1-adaptive control methods proposed in [14]
and [15], which adapt quickly, ensure stable performance in the presence of model
uncertainties, achieve the desired BIS reference tracking objectives, and are robust
to interpatient variability.

In this thesis, we present the first application of L1-adaptive control techniques
for closed-loop control of anesthesia delivery during surgery. We investigate both
state and output feedback schemes. With these controllers, we are able to achieve
small tracking error while maintaining robustness with respect to the variability
found across different patient responses to anesthesia. With the output feedback
scheme, depending on tuning, we have found that one controller can be used on
many patients, without any design modifications being made to it. Additionally,
the output-feedback controller compensates for disturbances, like incisions and
intubation, the patient may experience, keeping the patient sedated throughout the
procedure.

1.1 Prior work

A number of prior control efforts for the anesthesia problem have been com-
pleted and evaluated over the past 50 years. Schwilden and colleagues used me-
dian frequencies from EEG power spectra as one measure of sedative effect to
develop PK-PD model-based adaptive feedback control of the anesthetic agents
propofol, methohexital, and alfentanil during both clinical studies and for surgery
[16, 17, 18]. A number of model-based closed-loop anesthesia control studies
also have been published by Gentilini and colleagues [19, 20, 21, 22, 23]. In
[19], semi-physiological models and rule-based controllers for the regulation of
respiratory functions and mean arterial pressure (MAP) under administration of
isoflurane are described. The application of model predictive control schemes to
regulate MAP during delivery of isoflurane is investigated in [20]. In one of the
most comprehensive control implementations completed to date, Gentilini et al.
proposed a control scheme for the regulation of MAP and sedation level using
PK-PD models for the anesthetic agent isoflurane [21, 22], in which the design
of a cascaded internal model control (IMC) controller to regulate the sedative ef-
fects of anesthesia via the BIS level of the patient, and a three-observer-based

4



www.manaraa.com

state feedback controller to regulate MAP are proposed; the control designs are
implemented in a loop-at-a-time manner. Mortier also considered control of seda-
tion level via BIS monitoring in [24], where PK-PD model-based adaptive control
of propofol is implemented in surgeries. More recently, Haddad, Hayakawa and
Bailey have completed adaptive and neural network based control designs for the
regulation of unconciousness under administration of propofol [25, 26]. Although
this by no means represents an exhaustive discussion of prior work on closed-loop
control of anesthesia, it presents the work most closely related to that discussed in
this paper. However, all of the prior and ongoing work discussed above considers
the use of SISO models and control designs, whereas our long term objective is to
develop MIMO models and control designs.

The rest of the thesis is organized as follows.

Chapter 2: Problem Formulation
We introduce the basic model structures required for implementing the L1-

adaptive control techniques. Namely, the state-space feedback architecture re-
quires the system to be modeled as a SISO state-space model, and the output-
feedback architecture requires the system to be modeled as a strictly proper (albeit
unknown) transfer function.

Chapter 3: L1-Adaptive Control
The L1-adaptive control paradigm is a recently developed architecture that al-

lows for fast adaptation while also being robust to uncertainty, disturbances, and,
in our case, interpatient variability. In this chapter we provide an overview of the
theoretical foundations for the L1-adaptive control framework. The fundamen-
tal L1-adaptive control’s design is comprised of a predictor (state or output), a
projection based adaptive law, an L1-stability condition, and a control law that
incorporates a filter C(s).
Chapter 4: Modeling and System Identification

In chapter 4, we outline the patient model development methods we have used.
Data-based patient models are identified using subspace identification methods.
The state-feedback scheme requires identification of both black box and grey box

models to evaluate tracking and robustness to interpatient variability, respectively.
For the output-feedback scheme, the black box models identified for use with the
state-space scheme are sufficient for our studies, as this scheme is transfer function
based.

Chapter 5: Simulation Results
Simulations have been completed for Patients 1, 2, 3, 5, 6, and 7. In this chap-
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ter we present the results of these simulations and discuss the subsequent perfor-
mance analysis. For each patient model a state-feedback and an output feedback
controller have been designed and evaluated based on their ability to track a spe-
cific BIS trajectory and the total amount of anesthesia used. In addition, each
controller also has been applied to all patient models to examine robustness to
interpatient variability.
Chapter 6: Conclusions and Ongoing Research

Future directions such as higher order filters and real surgery condtions are
discussed. Conclusions, observations, and comments are also addressed herein.

6
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CHAPTER 2

PROBLEM FORMULATION

Our objective is to develop a control design platform using data-based models and
advanced control techniques so that patients’ BIS levels track a desired reference
trajectory. Generally when going into surgery, the patient is lightly sedated by the
anesthesiologist, which is approximately when the patient’s BIS level is between
70 to 50. This BIS range, however, is not deeply sedated enough to perform
surgery. To prevent the patient from waking up, the anesthesiologist wants to
bring the patient into the heavily sedated region, a BIS value in the range 45-
35. This range correlates with a sedation level for which any incisions or other
invasive procedures can be performed. The patient is then slowly woken up by
bringing them up to the lightly sedated region and finally into the alert region.

The way the human body reacts to stimuli varies greatly from person to per-
son, and thus it is difficult to derive a single mathematical model that can be used
for different people. As a result, the anesthesia-delivery controller must simulta-
neously compensate for the variability inherent in patient response to anesthesia
and disturbances. Therefore, we require a control architecture that is both adaptive
and robust. In order to achieve these objectives, we propose the use of the recently
developed L1-adaptive control techniques described in [14] and [15]. These con-
trollers are based on assuming models of specific forms with specific assumptions
imposed upon them. We provide more details in this and the following chapter on
the required model structures and assumptions.

2.1 L1-Adaptive Control - State Feedback Structure

The first L1-adaptive control scheme we will utilize is a state-feedback scheme
described in [14]. To implement this method, we require that the patient’s re-
sponse, in awake and sedated states, is modeled in the following basic state-space
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form:
ẋ(t) = Ax(t)+Bu(t)
y(t) = CT x(t),

(2.1)

where x ∈ Rn is the state vector, u is the control signal (in our case, a percentage
concentration, by volume, of the inhalational sedative isoflurane), y is the BIS
output signal, B,C ∈ Rn are known constant vectors, and A is an unknown nxn

Hurwitz matrix.

One crucial requirement of the state-feedback L1-adaptive controller architec-
ture is the following assumption: there exists a Hurwitz nxn matrix Am and a
vector of parameters θ such that (Am,B) is controllable and Am−A = Bθ T . Fur-
ther, it is also assumed that the parameter vector θ resides in a known convex set
Θ. The matrix Am is chosen to give the system its desired behavior and θ is the
vector of parameters that satisfies the previously discussed matching assumption
relating the unknown matrix A with our chosen matrix Am. If these assumptions
are satisfied, we can rewrite all patient models in the following form:

ẋ(t) = Amx(t)+B
(
u(t)−θ T x(t)

)
,x(0) = x0

y(t) = CT x(t),
(2.2)

where θ ∈Rn is a vector of time-varying unknown parameters. In order to control
and compensate for the varying responses to isoflurane among patients, we will
design an adaptive controller to ensure that the patient’s BIS level tracks a given
reference signal r(t) in both the transient and steady-state while keeping all of the
remaining error signals bounded.

Remark 1. We desire that the system in (2.2) have the same behavior as the

desired reference system

ẋm(t) = Amxm(t)+Bkgr(t),xm(0) = x0

ym(t) = CT xm(t).
(2.3)

where kg = 1/(−CT A−1
m B). This choice of kg ensures zero steady-state error for

constant inputs of r(t). This desired behavior for (2.2) could be achieved if u(t)
in (2.2) is set to be u(t) = θ T x(t) + kgr(t). This controller cannot be directly

implemented as θ is not known and must therefore be estimated.

8
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2.2 L1-Adaptive Control - Output Feedback Structure

The second scheme we will use is an output feedback controller, described in
detail in [15]. We consider the following SISO system:

y(s) = A(s)(u(s)+d(s)) (2.4)

where y(t) ∈ R is the system output (BIS value) and u(t) ∈ R is our control in-
put (percent ISO). It is assumed that A(s) is an unknown transfer function that is
strictly proper. The d(s) term is the Laplace transform of the time-varying dis-
turbances d(t) (see [15]). We have the following assumptions imposed on the
disturbances d(t) = f (t,y(t)):
1. There exists constants L > 0 and L0 > 0 such that | f (t,y1)− f (t,y2)| ≤ L|y1−
y2| and | f (t,y)| ≤ L|y|+L0 hold uniformly in t ≥ 0.
2. There exist constants L1 > 0, L2 > 0, and L3 > 0 such that

|ḋ(t)| ≤ L1|ẏ(t)|+L2|y(t)|+L3, ∀t ≥ 0. (2.5)

The control objective is to design an adaptive output feedback controller such
that the patients’ BIS level y(t) tracks the BIS reference input following a desired
reference model:

y(s)≈M(s)r(s). (2.6)

One example of this, and the form used later in the simulations is a first order
system like

M(s) = m/(s+m), m > 0. (2.7)

It can be seen that (2.4) can be re-written as

y(s) = M(s)(u(s)+σ(s))
σ(s) = ((A(s)−M(s))u(s)+A(s)d(s))/M(s).

(2.8)

Remark 2. Note that if we could set u(s) = r(s)−σ(s) in (2.4) we would achieve

the desired behavior in (2.6). However, since σ(s) is unknown, it must be esti-

mated.

Remarks 1 and 2 motivate the need for the L1-adaptive control designs detailed
in Chapter 3.

9
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CHAPTER 3

L1-ADAPTIVE CONTROL:
BACKGROUND

The L1-adaptive control architecture was first proposed by Cao and Hovakimyan
in [27, 14], and is intended for situations in which the controller must ensure that
the system output follows a given reference signal in the face of modeling uncer-
tainties. L1-adaptive control techniques have seen increasing application in the
last few years, particularly in aerospace applications [28, 29]. These methods are
useful in the same settings in which model reference adaptive control (MRAC)
techniques could be considered, but also in settings in which fast adaptation is
required. In this setting, MRAC controllers may result in instability and unac-
ceptable behaviors, such as high frequency oscillations in the control channel and
parameter drifts. However, L1-adaptive controllers prevent these behaviors from
occurring based on the implementation of a projection operator in the adaptive law
and a low pass filter in the control law. Additionally, the L1-adaptive control ar-
chitecture guarantees uniformly bounded asymptotic and transient tracking for the
system inputs and outputs. These bounds (which are quantifiable and discussed in
the sequel) improve as the adaptive rate is increased.

3.1 Indirect vs. Direct Adaptive Control and
relationship with L1-Adaptive Control

There are two different approaches to model reference adaptive control where the
plant is unknown: indirect and direct control. The premise behind indirect adap-
tive control is to estimate the parameters of the unknown plant based on input and
output data, and, based on these estimates, generate a feedback control function
to update the parameters of the controller. That is, it estimates the true parameters
of the plant at every time instant and uses it in the same non-adaptive control law.
Direct control, conversely, does not explicitly try to identify the plant in order
to generate the feedback control signal to update the parameters of the controller.

10



www.manaraa.com

That is, the parameters of the controller are directly adjusted. To do so, the system
is first parameterized in terms of the controller parameters, and then, an adaptive
law is designed to estimate the controller parameters. The objective of both ap-
proaches to the model reference adaptive control problem is to drive the difference
between the output of the plant and the output of the reference model to zero [30].

In the state-feedback L1-adaptive control architecture we are estimating the
constant parameter vector θ which is a parameter of the controller. Thus, it can
viewed as a form of direct adaptive control. The output-feedback L1-adaptive
control architecture estimates σ(t) which is a controller parameter. That is, it also
is a form of direct adaptive control.

What the L1-adaptive control scheme does is estimate an uncertain parameter
of the plant (i.e. θ in the state-feedback architecture or σ in the output feedback
architecture) and use that estimate in the control law to generate the control signal.
Similar to MRAC, a desired reference model is selected that specifies the ideal
response of the system to an external command. That is, the reference model
should address required performance specifications such as percent overshoot, rise
time, and settling time.

Where the L1-adaptive control approach differs from other adaptive schemes
is that it is a control scheme that decouples adaptability and robustness. It offers
the ability to have high adaptation rates while maintaining a time-delay margin
that is bounded away form zero. This architecture guarantees fast adaptation that
is limited only by hardware [31].

3.2 L1-Adaptive Control - State Feedback Based
Design

The main elements of the L1-adaptive control paradigm are summarized below
(see references [14] and [32] for details):

State Predictor: Consider the state predictor:

˙̂x(t) = Amx̂(t)+B
(
u(t)− θ̂ T x(t)

)
, x̂(0) = x̂0

ŷ(t) = CT x̂(t),
(3.1)

where the adaptive estimate θ̂(t) is governed by the adaptive law given in the
following.

11
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Figure 3.1: State feedback controller simulink model

Adaptive Law: The adaptive estimate θ̂(t) is given by

˙̂
θ(t) = ΓProj

(
θ̂(t),x(t)x̃(t)PB

)
, θ̂(0) = θ̂0, (3.2)

where x̃(t) = x̂(t)− x(t) is the error signal between the states of the system and
the state predictor, Γ ∈ R+ is an adaptive gain, and P = PT is the solution to the
algebraic Lyapunov equation Am

T P + PAm = −Q,Q > 0. The projection opera-
tor Proj(·, ·) is essentially of least-squares form, and ensures that the parameter
estimate θ̂(t) remains inside the compact set Θ; see [32] for details.

Control Law: The control signal u(t) is defined as the output of a low-pass filter.
The control law is given by:

u(s) = C(s)(r̄(s)+ kgr(s)) ,kg =−1/
(
CT Am

−1B
)
, (3.3)

12
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where C(s) is a low-pass filter that is strictly proper and stable with DC gain
C(0) = 1, and r̄(s) is the Laplace transform of r̄(t) = θ̂ T (t)x(t).
L1-gain Stability Condition: The filter C(s) must be chosen such that the fol-
lowing condition is satisfied:

‖Ḡ(s)‖L1L < 1, (3.4)

where Ḡ(s) = H(s)(1−C(s)) ,H(s) = (sI−Am)−1 B and L = maxθ∈Θ ‖θ‖L1 .
Transient Performance: The following upper bound holds for all t ≥ 0 [14]:

‖x̃(t)‖L∞
≤

√
θ̄max

λmin(P)Γ
, θ̄max = max

θ∈Θ

n

∑
i=1

4θ
2
i ,∀t ≥ 0 (3.5)

The higher the adaptive gain value used, the lower the tracking error achieved.
Steady-State Performance: In the following two theorems, excerpted from [14],
we summarize the guaranteed performance of the system when controlled by the
L1-adaptive controller.

Theorem 1. Given the system in (2.2) and an L1-adaptive controller as defined

by (3.1), (3.2), and (3.3) subject to (3.4), the tracking error x̃(t) converges asymp-

totically to zero.

Theorem 2. Given the system in (2.2) and an L1-adaptive controller defined

by (3.1), (3.2), and (3.3) subject to (3.4), if r(t) is a constant value r, then y(t)
converges to r.

Using clinical trial data, we construct a set of data-based models in the form of
(2.1). We then apply the L1-adaptive techniques outlined in the preceding, so that
the patients’ BIS levels track a prespecified reference trajectory.

3.3 L1-Adaptive Control - Output Feedback Based
Design

Closed-loop Reference System: In [15] the following closed-loop reference sys-
tem is considered:

yre f (s) = M(s)(ure f (s)+σre f (s)) (3.6)

σre f (s) =
(A(s)−M(s))ure f +A(s)dre f (s)

M(s)
(3.7)

13
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ure f (s) = C(s)(r(s)−σre f (s)) (3.8)

C(s) is a strictly proper transfer function with C(0) = 1. The simplest choice for
C(s) would be a first order system

C(s) = ω/(s+ω); (3.9)

this is what is used in the majority of our simulations.

L1-Stability Condition: Choices of M(s) and C(s) are restricted such that

H(s) =
A(s)M(s)

(C(s)A(s)+(1−C(s))M(s))
(3.10)

is BIBO stable and

‖G(s)‖L1L < 1, G(s) = H(s)(1−C(s)). (3.11)

If M(s) and C(s) are chosen such that (3.10) and (3.11) hold, then the discussed
closed-loop reference system in (3.6), (3.7), and (3.8) is BIBO stable [15].

We choose P > 0 and define Q = 2mP. We then define

H0(s) =
A(s)

C(s)A(s)+(1−C(s))M(s)
(3.12)

H1(s) =
(A(s)−M(s))C(s)

C(s)A(s)+(1−C(s))M(s)
. (3.13)

If we define

A(s) =
An(s)
Ad(s)

, C(s) =
Cn(s)
Cd(s)

, M(s) =
Mn(s)
Md(s)

, (3.14)

then from (3.14) and (3.12) we have

H0(s) =
Cd(s)An(s)Md(s)

Hd(s)
, (3.15)

and from (3.14) and (3.13) we have

H1(s) =
Cn(s)An(s)Md(s)−Cn(s)Ad(s)Mn(s)

Hd(s)
(3.16)

where Hd(s) = Cn(s)An(s)Md(s)+Mn(s)Ad(s)(Cd(s)−Cn(s)).

14
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These expressions highlight the following: (1) since it can be seen that the
difference in order between Cd(s)−Cn(s) and Cn(s) is larger than zero, the order
of Mn(s)Ad(s)(Cd(s)−Cn(s)) must be higher than Cn(s)Ad(s)Mn(s); (2) since it
can be seen that the difference in order between Ad(s) and An(s) is larger than
zero while the relative order of Mn(s) and Md(s) is −1, it can be shown that the
order of Mn(s)Ad(S)(Cd(s)−Cn(s)) must be higher than that of Cn(s)An(s)Md(s).
Thus we know that H1(s) is strictly proper. Since H1(s) has the same denominator
as H(s), it is also bounded-input bounded-output (BIBO) stable. Similarly, it can
be shown that H0(s) is both proper and BIBO stable.

Define

∆ =||H1(s)||L1||r||L∞
+ ||H0(s)||L1(Lρ +L0)

+

(∣∣∣∣∣
∣∣∣∣∣H1(s)

M(s)

∣∣∣∣∣
∣∣∣∣∣
L1

+L||H0(s)||L1

||C(s)H(s)/M(s)||L1

1−||G(s)||L1L

)
γ̄

(3.17)

where γ̄ < 0 is an arbitrary constant. As was previously discussed, we have H1(s)
strictly proper and BIBO stable, which implies ||H1(s)/M(s)||L1 is finite. Thus ∆

is a finite number. Further, define

β1 = 4∆||H0(s)||L1

(
L1β01 +L2

||C(s)H(s)/M(s)||L1

1−||G(s)||L1L

)
, (3.18)

β2 = 4∆||sH1(s)||L1(||r||L∞
+2∆)+4∆||H0(s)||L1(L1β02 +L3 +ρL2), (3.19)

β3 = Pβ1/Q = β1/(2m), (3.20)

and

β4 = 4∆
2 +Pβ2/Q = 4∆

2 +β2/(2m) (3.21)

where

ρ =
||H(s)C(s)||L1||r||L∞

+ ||G(s)||L1L0

1−||G(s)||L1L
, (3.22)

β01 = ||sH(s)(1−C(s))||L1

L||C(s)H(s)/M(s)||L1

1−||G(s)||L1L
, (3.23)
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and

β02 = ||sH(s)C(s)||L1(||r||L∞
+2∆)+ ||sH(s)(1−C(s))||L1(Lρ +L0). (3.24)

Since we have that H(s) and H1(s) are BIBO stable and strictly proper, ||sH(s)(1−
C(s))||L1 , ||sH1(s)||L1 , and ||sH(s)C(s)||L1 are finite.

Output Predictor: Consider the output predictor [15]:

˙̂y(t) =−mŷ+m(u(t)+ σ̂(t)), ŷ(0) = 0. (3.25)

Adaptive Law: The adaptive estimate σ̂(t) is given by

˙̂σ(t) = ΓProj(σ̂(t),−mPỹ(t)) , ỹ = ŷ− y, σ̂(0) = 0, (3.26)

where P > 0 is arbitrary and Γ is the adaptation rate and is subject to the following
lower bound:

Γ > max{
αβ 2

3
(α −1)2β4P

,
αβ4

Pγ̄2 } (3.27)

where α > 1 is an arbitrary constant. The projection bound is

|σ̂(t)| ≤ ∆ (3.28)

Control Law: The control law that generates the input signal is given as:

u(s) = C(s)(r(s)− σ̂(s)). (3.29)

Performance: In the following theorem, excerpted from [15], we summarize the
guaranteed performance of the system when controlled by the L1-adaptive con-
troller.

Theorem 3. Given the system in (2.4) and the L1-adaptive output feedback con-

troller given by (3.25), (3.26), and (3.29) subject to (3.11), we have

||ỹ||L∞
< γ0 (3.30)

||y− yre f ||L∞
≤ γ1 (3.31)
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||u−ure f ||L∞
≤ γ2 (3.32)

where ỹ(t) = ŷ(t)− y(t), γ0 =
√

αβ4/(ΓP) and

γ1 = ||C(s)H(s)/M(s)||L1γ0/(1−||G(s)||L1L), (3.33)

γ2 = L||H(s)C(s)/M(s)||L1γ1 + ||H2(s)/M(s)||L1γ0. (3.34)

Again, Theorem 3 shows that as the adaptation rate Γ is increased, the bounds on
the errors decrease, thus improving performance.

A block-diagram reprsentation of the implementation of this control scheme is
given in Figure 3.2
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Figure 3.2: Output feedback controller Simulink model
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CHAPTER 4

MODELING AND SYSTEM
IDENTIFICATION

As this is an initial investigation of the applicability of L1-adaptive techniques,
we have used clinical trial data from our earlier studies ([12, 13, 33]) in order to fa-
cilitate the comparison of controller performance results; ongoing efforts include
design and analysis using surgical data records. The original trial was designed
to define the relation between clinical evaluation of the state of conciousness, ex-
plicit recall, drug concentrations and BIS effects of the anesthetic agent isoflurane
when administered alone to healthy volunteers under controlled conditions. Addi-
tionally, a series of external stimuli, or disturbances, were applied to the patients
(volunteers) throughout the administration of anesthesia. These stimuli included:
laryngeal mask insertion and removal; evoked potential evaluations involving the
application of short electrical stimulation signals to the wrist of the volunteer at
a period of every 3 seconds and up to 100 µA and 100 V amplitude; and alert-
ness evaluations which included yelling at, shaking, and squeezing the trapezius
muscle of the volunteer. Time-synchronized output measurements of the patients’
BIS, mean arterial pressure (MAP) and HR were recorded every two seconds. For
healthy individuals, normal ranges for MAP are between 70 and 110 mmHg, and
the average resting HR for normal adults is around 70 beats per minute [34]. We
previously developed quantitative models of the stimuli applied to the patients
during the study [12] for use in system identification. Similar quantitative models
have been adopted by other researchers [35], [36] and [20].

An example of a set of data taken from one subject during the clinical trial is
shown in Figures 4.1 and 4.2. This data is fairly representative of the response
expected from healthy volunteers to anesthesia and stimuli, however, as to be
expected individual responses exhibit noticeable variation. This inter-patient vari-
ability is one of the main motivations for considering adaptive control techniques.

In previous work we found that switched-linear models effectively capture the
response to anesthesia (note the effective switching that appears in the BIS levels
in the plot presented in Figure 4.2). The constituent subsystems in these earlier
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Figure 4.1: Isoflurane and Stimuli Inputs versus Time

switched-linear models were constructed using subspace identification methods
applied to the data described above (specifically, we implemented the N4SID al-
gorithm, first introduced in [37], in MATLAB; this provides black box models).
Observed BIS values were used to choose between one of two models for a pa-
tient’s response to anesthesia and stimuli (i.e., alert models, and sedated models
that include both moderate and deeply sedated states). Switching between these
two models was based on a BIS threshold value of 70, which was physiologically
motivated (i.e., in [2] it is demonstrated that approximately 50% of the population
will be unconscious at a BIS value of 70). For comparison purposes, we also con-
structed models of the dosing and related effects of isoflurane using the standard
pharmacological approaches, i.e., PK-PD models; for details on these modeling
results see [12].
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Figure 4.2: BIS, HR and MAP Outputs versus Time

4.1 Identification for L1-Adaptive Control State
Feedback Models

In the work described herein, we construct grey box state-space models of patient
response to anesthesia and stimuli in the sedated and alert states. Grey box meth-
ods are used to ensure that the input and output matrices (i.e., the B and C matrices)
match, conforming with the L1-adaptive state feedback method requirements. To
compute these models, the MATLAB idgrey command is used, ensuring the pa-
tient models have the required structure for the L1-adaptive control architecture.
To date, models have been identified for patient datasets referred to as Patients 1,
2, 3, 5, 6 and 7. Estimation and validation results for these datasets are accept-
able, with an overall average normalized residual error of approximately 34.5%.
Examples are shown in Figures 4.3 and 4.4.

In the initial stage of the current study of identification and adaptive control
design, we have constructed models and adaptive controllers for SISO systems
(isoflurane input to BIS output), for which we evaluate and compare the model-
ing and controller performance results. We specifically focus on evaluating inter-
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Figure 4.3: Patient 5 model validation results

patient adaptability of the controllers, and along these lines include performance
analyses of applying controllers designed based on the model for one patient to
other patient models. The second stage of this study is identification and adaptive
control design evaluation for multi-input single-output (MISO) systems, namely,
where external stimuli are included as disturbance inputs, in addition to the con-
trolled isoflurane input.

The final stage of this project involves the construction of MIMO models and
the application of multivariable L1-adaptive techniques to these models [38]. This
stage will involve evaluating vital sign responses (HR and MAP, for example)
as well as BIS responses. We note here that our focus is on automated control
of patients primarily in the sedated state. Our assumption is that the attending
physician performs the initial induction from alert to the lightly-sedated state in
order to closely monitor initial patient response. Upon being lightly sedated and
observed for safety reasons, the patient is then switched to the proposed automated
control regime.

4.2 Identification of L1-Adaptive Control-Output
Feedback Models

Unlike the state feedback L1-adaptive control architecture, black box models are
sufficient for control design. Since this architecture relies on the transfer function,
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Figure 4.4: Patient 7 model performance

Table 4.1: Model performance

Patient rN

1 0.1843
2 0.3642
3 0.6058
5 0.334
6 0.3208
7 0.2681

the specific structure of the A, B, and C matrices are not required to be known.
To acquire models for control design, the MATLAB command n4sid is used to
calculate the models for 6 patients which we have designated Patients 1, 2, 3, 5, 6,
and 7. The MATLAB code to compute these models can be seen in Appendix A.
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CHAPTER 5

SIMULATION RESULTS: ANALYSIS AND
DISCUSSION

In this chapter we present the design approaches for the state feedback and output
feedback L1-adaptive control schemes and simulations results applying them to
a set of patients named Patients 1, 2, 3, 5, 6, and 7. Additionally, performance
differences between first and second order filters are investigated regarding their
performance differences in the output feedback schemes. We conclude by dis-
cussing the differences between the L1-adaptive control approach and previous
investigations using an LPV control scheme.

As noted previously, models were constructed through the MATLAB idgrey

command on partitioned patient data (i.e., the data was divided roughly in half for
estimation and validation purposes). A MATLAB m-file was created to identify
the values for all parameters required for the system in (2.2), and for the L1-
adaptive controller given by (3.1), (3.2), and (3.3). Simulink was then used to
simulate the closed-loop systems. We have assumed there is no time delay in
the system in our simulations to date (although the L1-adaptive control technique
allows for a time delay margin bounded away from zero [32]).

5.1 State-Feedback Design Approach

The overall approach to designing the L1-adaptive state-feedback controller con-
sisted of essentially two parts: choosing the matrix Am and the filter C(s).

The matrix Am reflects our desired reference system behavior. That is, how we
would like the system to behave. We design this matrix based on the previously
discussed matching assumption, Am−A = Bθ T . Essentially, Am can be designed
using a variety of methods such as pole-placement or LQR-design. Our goal was
that the system have minimal overshoot and a settling time between one and two
minutes.

After Am is chosen, we can then design C(s). First, we select a conservative
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convex set Θ that our estimates, θ̂(t), reside in. From this, we calculate θmax

which is used to establish the upper bound on the L1-norm of G(s). A filter C(s)
then can be chosen that is asymptotically stable, strictly proper, and has a DC gain
C(0) = 1. For the following simulations, first order filters were used.

Having chosen Am and C(s), all that remains is to set the projection bounds
and the adaptation rate Γ. The projection bounds are set based on the set Θ. The
adaptation rate is normally set as high as the physical system will allow, as this
improves tracking performance. For the majority of our simulations, Γ was set to
1000.

5.1.1 Patient 1 L1-Adaptive Control-State Feedback

The model parameters for Patient 1-sedated state are:

Am =


−0.0063 −0.0413 −0.0324 −0.0334
0.0326 −0.0775 −0.1507 −0.2732
−0.0004 −0.0081 0.1035 0.2851
0.2276 0.1392 −0.4974 −0.7736

 ,

B =


−0.0047
0.0258
0.0004
0.4817

 ,

C =


136.01
−9.7696
2.3834
−0.9740

 , and θ =


−0.4626
−0.2693
−0.1000
1.2022

 . (5.1)

We assume the unknown vector θ belongs to a known compact set, which we
have chosen initially to be Θ =

(
θ ∈ R4|θi ∈ [−8,8]

)
. Typically, a compact set is

chosen for Θ that is conservative with respect to the values these parameters are
expected to take. The set is assumed compact for asymptotic stability considera-
tions. The conservativeness of our choice for θ can be seen by the above values
of θ required for the desired performance. We set Q = 2I to simplify calculations
and Γ = 1000 to have a relatively high adaptation rate. The L1-adaptive controller
given by (3.1), (3.2), and (3.3) is used to track a given reference r(t). For the set Θ,
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an appropriate value for L is 32, based on the L1-stability condition given in (3.4).
That is, to satisfy the L1-gain stability condition, C(s) must be chosen such that
‖Ḡ(s)‖L1 < 1/32. If we choose C(s) = 40

s+40 , then ‖Ḡ(s)‖L1 = 0.0276 < 0.0312,
satisfying the necessary condition for stability. C(s) is chosen in this manner
since it has the relatively small bandwidth compared to the other first order filters
that would satisfy the L1-stability condition. This is done to compensate should
higher frequency signals enter r̄(t). Simulation results for the L1-adaptive con-
troller applied to the dynamic response model for Patient 1 can be seen in Figure
5.1.

Figure 5.1: Patient 1 BIS reference tracking and control effort

5.1.2 Patient 2 L1-Adaptive Control-State Feedback

The model parameters for Patient 2-sedated state are:

Am =


0.0141 −0.0364 −0.0875 −0.0528
0.0731 −0.1146 −0.2768 −0.3042
0.0771 −0.0500 −0.3899 0.0408
0.0812 −0.0837 −0.5631 −0.2635

 ,
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B =


0.0003
0.0010
0.0015
0.0015

 ,

C =


237.2070
−11.6216

0.5634
−2.9660

 , and θ =


−53.5172
−27.2409
272.6358
91.1382

 . (5.2)

For Patient 2, it is assumed the unknown vector θ belongs to the compact set
Θ =

(
θ ∈ R4|θi ∈ [−275,275]

)
. Similar to the Patient 1 simulation, Q = 2I to

simplify calculations, but, for Patient 2, Γ = 100000 is chosen as 1000 does not
yield the performance we desire. The L1-adaptive controller given by (3.1), (3.2),
and (3.3) is used to track a given reference r(t). For our compact set Θ, L = 1100
based on the condition given in the L1-stability condition (3.4). To satisfy the
L1-gain stability condition, C(s) must be chosen such that ‖Ḡ(s)‖L1 < 1/1100.
If we choose C(s) = 15

s+15 , ‖Ḡ(s)‖L1 = 2.22∗10−4 < 9.09∗10−4 so the condition
is satisfied. C(s) is chosen in this manner to satisfy the L1-stability condition and
to suppress high frequency that may be in the signal r̄(t). The simulation results
of the L1 adaptive controller applied to the model for Patient 2 can be seen in
Figure 5.2.
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Figure 5.2: Patient 2 BIS reference tracking and control effort

5.1.3 Patient 3 L1-Adaptive Control-State Feedback

The model parameters for Patient 3-sedated state are:

Am =


−0.0197 0.0464 −0.0425 −0.1257
−0.0335 0.1176 −0.0390 −0.2506
−0.0362 0.1943 −0.2665 −0.6133
−0.0870 0.3325 −0.0259 −0.5964

 ,

B =


−0.0082
−0.0185
−0.0166
−0.0381

 ,

C =


173.0765
−9.0676
2.5768
−2.4800

 and θ =


−2.2918
9.0462
−8.0825
−16.3102

 . (5.3)

For Patient 3, it is assumed the unknown vector θ belongs to the compact set
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Θ =
(
θ ∈ R4|θi ∈ [−20,20]

)
. For ease of calculation, we set Q = 2I and set

Γ = 1000 to have a reasonably high adaptive gain. The L1-adaptive controller
is deisgned based on (3.1), (3.2), and (3.3). For our compact set Θ, L is set to
80 as defined in the L1-stability condition (3.4). We then must choose C(s) to
satisfy the L1-gain stability condition. That is, C(s) must be chosen such that
‖Ḡ(s)‖L1 < 1/80. If we choose C(s) = 15

s+15 , ‖Ḡ(s)‖L1 = 4.52∗10−3 < 1/80 so
the condition is satisfied. This C(s) filter is chosen such that it suppresses high
frequencies that would otherwise enter the system, and it is also used for other
controllers. This is useful for comparison purposes and analysis purposes when
evaluating performance of among the patients and controller combinations. The
simulation results of the L1-adaptive controller applied to the model for Patient 3
can be seen in Figure 5.3.

Figure 5.3: Patient 3 BIS reference tracking and control effort
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5.1.4 Patient 5 L1-Adaptive Control-State Feedback

The model parameters for Patient 5-sedated state are:

Am =


−0.0553 0.0037 0.0329 −0.0265
0.6119 −0.5097 0.1335 0.2688
0.9460 −0.6811 −0.0161 0.5125
−0.6282 0.3854 −0.1738 −0.1729

 ,

B =


−0.0070
0.0833
0.1311
−0.0873

 ,

C =


139.8580
−9.8886
0.4684
−0.5230

 , and θ =


7.2593
−4.8310
−0.0168
1.7065

 . (5.4)

For this patient model, we have chosen the compact set for θ initially to be
Θ =

(
θ ∈ R4|θi ∈ [−15,15]

)
. The conservativeness of our choice for θ can be

seen by the above values of θ required for the desired performance. We set Q = 2I
and Γ = 1000 just as was done for Patients 1 and 3. The L1-adaptive controller is
designed based on (3.1), (3.2), and (3.3). For the set Θ, an appropriate value for
L is 60, based on the L1-stability condition (3.4), that is, to satisfy the L1-gain
stability condition, C(s) must be chosen such that ‖Ḡ(s)‖L1 < 1/60. For the filter
C(s), we choose C(s) = 15

s+15 . Then ‖Ḡ(s)‖L1 = 0.0162 < 0.0167, satisfying the
necessary condition for stability, and this filter helps reject high frequencies that
may appear in the signal r̄(t). Simulation results for the L1-adaptive controller
applied to the dynamic response model for Patient 5 can be seen in Figure 5.4.
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Figure 5.4: Patient 5 BIS reference tracking and control effort

5.1.5 Patient 6 L1-Adaptive Control-State Feedback

The model parameters for Patient 6 – sedated state are:

Am =


0.0309 0.0058 −0.1055 −0.0181
0.1087 −0.0247 −0.1641 0.0147
0.3999 −0.0985 −0.3796 −0.5498
0.2189 −0.1152 −0.0106 −0.3807

 ,

B =


0.0025
0.0072
0.0267
0.0151

 ,

C =


137.6774
−8.9751
−5.8180
3.9340

 ,θ =


−14.5340

1.5157
7.6818
21.4511

 (5.5)

For Patient 6, the unknown vector θ is assumed to belong to the compact set
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Θ =
(
θ ∈ R4|θi ∈ [−25,25]

)
. Let Q = 2I and Γ = 1000. The L1-adaptive con-

troller given by (3.1), (3.2), and (3.3) is used to track a given reference r(t). For
our compact set Θ, L = 100 based on the condition given in the L1-stability
condition (3.4). To satisfy the L1-gain stability condition, C(s) must be cho-
sen such that ‖Ḡ(s)‖L1 < 0.01. If we choose C(s) = 15

s+15 , then this filter gives us
‖Ḡ(s)‖L1 = 3.4∗10−3 < 0.01 satisfying the stability condition. It also suppresses
high frequencies in r̄(t) and allows us to compare patient and controller combina-
tions. The simulation results of the L1-adaptive controller applied to the model
for Patient 6 can be seen in Figure 5.5.

Figure 5.5: Patient 6 BIS reference tracking and control effort

5.1.6 Patient 7 L1-Adaptive Control-State Feedback

The model parameters for Patient 7 – sedated state are:

Am =


−0.0532 0.0324 −0.0979 0.0392
−0.232 0.232 −0.5170 0.1317
−0.3785 0.4849 −0.6837 0.1086
0.2636 −0.2993 0.7114 −0.2941

 ,

31



www.manaraa.com

B =


−0.0016
−0.0078
−0.0118
0.0082

 ,

C =


175.3789
−10.2101
−0.8136
0.3883

 ,θ =


32.0021
−39.6487
56.6002
−32.3687

 (5.6)

For Patient 7, it is assumed the unknown vector θ belongs to the compact set
Θ =

(
θ ∈ R4|θi ∈ [−75,75]

)
. Similar to our previous Patient 2 simulation, we set

Q = 2I and Γ = 10000. The L1-adaptive controller given by (3.1), (3.2), and (3.3)
is implemented to track a given reference BIS trajectory, r(t). For our compact set
Θ, L = 300 based on the condition given in the L1-stability condition (3.4). Again,
we must choose C(s) such that it satisfies the L1-gain stability condition. That
is, C(s) must be chosen such that ‖Ḡ(s)‖L1 < 1/300. If we choose C(s) = 15

s+15 ,
‖Ḡ(s)‖L1 = 1.4 ∗ 10−3 < 1/300 so the condition is satisfied as required and the
system can suppress high frequencies in the r̄(t) signal. The simulation results of
the L1-adaptive controller applied to the model for Patient 7 can be seen in Figure
5.6.

As can be seen in Figures 5.1-5.6, the L1 control designs achieve the desired
tracking performance quickly. The tracking errors are small in all examples. The
metric used to evaluate BIS reference tracking performance is the normalized
mean square error, or residual error term,

rN =
∑

N
n=1(yn− ŷn)2

∑
N
n=1 y2

n
(5.7)

where the reference signal y and the patient’s BIS value ŷ contain N data points
over the course of the simulation. The residual errors, rN , can be seen in Table
5.1; the average residual error value is approximately 0.0031.

In each case, the system has a non-zero initial condition which leads to an
exponentially decaying term in the control and system state signal; this does not
affect the performance of the system throughout. The same design approach was
followed for Patients 1, 2, 3, 5, 6 and 7 and yielded similar results.
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Figure 5.6: Patient 7 BIS reference tracking and control effort

5.1.7 State-Feedback Robustness to Inter-patient Variability

After control designs were completed for each of the Patients 1, 2, 3, 5, 6 and
7, they were then simulated in feedback with models for the remaining patients
to evaluate inter-patient design robustness. We simulated the control designs for
Patients 1, 2, 3, 5, 6, and 7 on each of the other patient models. That is, we
applied the controller designed for Patient 1 on Patients 2, 3, 5, 6, and 7 and
similarly for all other patient-controller combinations. In general, the patients’
BIS levels tracked the desired reference profile closely, regardless of whether the
applied controller was that specifically designed for them or not.

Remark 3. Note that in earlier studies we found that the patient datasets could be

separated into two subgroups based on similar dynamic response behavior; one

group included Patients 1, 5, 6, and 7, and the second group included Patients 2

and 3 [12].

Figures 5.7 and 5.8 show two simulations demonstrating that the L1 controller
designs achieve performance that is close to, and in some cases better than, the
performance achieved on the patient model used to design the controller. In these
examples, the controller design based on the model for Patient 1 is applied to the
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model for Patient 2 (one of the second subgroup patient datasets; see remark 3),
and the controller designed based on the model for Patient 5 is applied to the model
for Patient 1. As can be seen in the plots, both patient responses achieve nearly the
same BIS profile as the patient for whom the controller was designed. Computing
the residual errors, given by (5.7), indicates that the tracking profile for Patient 2
is close to that for Patient 1 using the controller designed for the Patient 1 model;
that is, their respective rN values are 0.0030 and 0.0026. Similarly, evaluating
the tracking profile of Patient 1 with the controller designed for Patient 5 yields
a residual error value of rN = 0.0029 while for the Patient 5 model the residual
error using the Patient 5 controller is 0.0032.
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Figure 5.7: BIS reference tracking: Patient 1 controller applied to Patient 2 model

Based on using the normalized mean square tracking error (5.7) as our perfor-
mance metric, the controller/patient combination that performs best for our de-
sired reference profile is the Patient 1 controller applied to the Patient 7 model,
resulting in rN = 0.002. The worst controller/patient combination performance
results from applying the Patient 7 controller to the model for Patient 5, giving
rN = 0.0067. The average rN value over all combinations is 0.0033, which is very
close to the average rN value resulting from using the controllers designed specif-
ically for patients, which is rN = 0.003. These results demonstrate the inherent
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Figure 5.8: BIS reference tracking: Patient 5 controller applied to Patient 1 model

robustness properties of the L1-adaptive methods. Based on these rN values, it
also appears that the Patient 3 controller provides superior tracking performance
over all control designs completed to date. This controller results in the lowest
rN value when applied to the models for Patients 5 and 6 (0.0026 and 0.0024,
respectively) and the lowest average rN value when applied to the other patients,
0.0026. Table 5.1 provides a summary of the tracking performance results.

Table 5.1: Normalized residual errors: BIS tracking performance

Patient/Controller 1 2 3 5 6 7
1 0.0026 N/A 0.0029 0.0029 0.0029 0.0028
2 0.0030 0.0021 0.0029 0.0043 0.0031 0.0037
3 N/A N/A 0.0044 N/A N/A N/A
5 0.0032 N/A 0.0026 0.0032 0.0031 0.0067
6 0.0025 N/A 0.0024 0.0049 0.0029 0.0058
7 0.002 N/A 0.0023 0.0045 0.0031 0.0033

A second metric used to evaluate controller performance is the total amount
of isoflurane required to attain the tracking performance. (Note that high total
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amounts of anesthetics used in surgery have been associated with negative long-
term patient outcomes [39, 40, 41]). Table 5.2 provides relative quantities, in
liters, of isoflurane required to maintain the BIS tracking profiles previously dis-
cussed. Note that inhalational anesthetics are delivered as a percentage by volume
to an external respiratory circuit. This gas mixture is then delivered to the lungs
by a ventilation system, measured in liters/minute. So, for example if the total
fresh gas flow mixture from the machine is 2− 4 l/min, and the isoflurane is 1%
(at an assumed mean alveolar concentration (MAC) of 1), then 20−40 cc/min of
isoflurane gas is being delivered to the respiratory circuit. To estimate the follow-
ing relative quantities of isoflurane used, we assumed an average fresh gas flow
mixture delivery rate of 3 l/min at 1 MAC. The average isoflurane use over this pa-
tient set is 2.593 liters; average isoflurane use for a comparable BIS reference and
simulation time resulting from previous linear parameter-varying control studies
was approximately 3.211 liters [42].

Table 5.2: Control effort: Isoflurane use in liters

Patient/Controller 1 2 3 5 6 7
1 2.391 N/A 2.928 2.368 2.969 2.697
2 2.125 2.035 2.727 2.121 3.206 2.635
3 N/A N/A 2.754 N/A N/A N/A
5 2.354 N/A 2.932 2.338 3.011 2.705
6 2.290 N/A 2.820 2.366 3.248 2.734
7 2.086 N/A 2.769 2.036 3.259 2.793

5.2 Output-Feedback Design Approach

The overall objective for designing these controllers was to have the patient BIS
signal follow a desired BIS trajectory and be robust. To ensure stability of the
closed-loop system when using controllers we designed, the design process started
by ensuring that the L1-stability condition will be satisfied. To simplify the design
process, the average BIS value from identified model is detrended to zero and the
models are then considered as transfer functions of the magnitude of BIS decrease

rather than exact BIS levels. Essentially the models values are shifted. This does
not affect the stability of the system.
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The desired reference transfer function, M(s), is then selected based on the
desired patient behavior using (2.7). Values of m that were investigated were 1/15,
1/30, and 1/60, as these would give settling times of around 1 minute, 2 minutes,
and 4 minutes, respectively, when r(t) follows step like behavior. A settling time
of one minute was desired and was achieved with many patients, but to ensure
robustness, other values were examined.

In terms of designing the L1-adaptive output-feedback controllers for the pa-
tient set, the greatest difficulty lay in ensuring H(s) is BIBO stable, since we have
non-minimum phase zeros. We used first order filters C(s) and first order desired
reference models M(s), then examined the denominator of H(s) in terms of ω and
m to reduce the possible choices for ω and m. In particular, we took advantage of
the fact that with first order choices,

H(s) =
Cd(s)Mn(s)An(s)

Md(s)Cn(s)An(s)+(Cd(s)−Cn(s))Mn(s)Ad(s)
(5.8)

becomes the much more simple form given in the equation below, i.e.,

H(s) =
(s+ω)Mn(s)An(s)

ωMd(s)An(s)+ sMn(s)Ad(s)
. (5.9)

The filter C(s) needs to be chosen in combination with M(s) such that the L1-
stability condition is satisfied. The parameters m and ω were selected using a
combination of classical stability analysis methods and trial and error. MATLAB
was used to verify stability of H(s) and the code can be seen in Appendix C.
Finally, the projection initial condition is set to zero and the adaptive rate, Γ, and
projection bounds are set conservatively large.

5.2.1 Patient 1 L1-Adaptive Control-Output Feedback

As previously noted, models were constructed through the MATLAB n4sid com-
mand on partitioned patient data (i.e., the data was divided roughly in half for
estimation and validation purposes). A MATLAB m-file was created to identify
the values for all parameters required for the system in (2.4), and for the L1-
adaptive controller given by (3.25), (3.26), and (3.29). Simulink was then used to
simulate the closed-loop systems.
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5.2.1.1 Tracking, no disturbances

The model parameters for Patient 1-sedated state are:

A =


−0.0042 −0.0401 −0.0319 −0.0391
0.0207 −0.0844 −0.1533 −0.2422
−0.0006 −0.0082 0.1034 0.2855
0.0048 0.0095 −0.5456 −0.1946

 ,

B =


−0.0047
0.0258
0.0004
0.4817

 ,

C =


136.01
−9.7696
2.3834
−0.9740

 . (5.10)

The transfer function for the ISO/BIS model of Patient 1-sedated state is:

BIS
ISO

:
−1.359s3−1.362s2 +0.08081s−0.00635

s4 +0.1798s3 +0.1461s2 +0.01316s+0.0001649
(5.11)

We have assumed there is no time delay in the system in our simulations. The
transfer function for ISO to BIS is assumed to be strictly proper (the models iden-
tified using n4sid are just that). We set P = 1, ∆ = 100 and Γ = 50000. The L1-
adaptive controller given by (3.25), (3.26), and (3.29) is used to track a given ref-
erence BIS trajectory, r(t). If, using (2.7), we set m = 1/30, and we set ω = 0.001
in (3.9), we can show that (3.10) is strictly proper and BIBO stable as required.
Simulation results for the L1-adaptive controller applied to the dynamic response
model for Patient 1 can be seen in Figure 5.9.

As can be seen in Figure 5.9, the L1-adaptive output feedback control design
achieves the desired tracking performance quickly, and the tracking error is small.
The metric used to evaluate BIS reference tracking performance is the normalized
mean square error, or residual error term,

rN =
∑

N
n=1(yn− ŷn)2

∑
N
n=1 y2

n
(5.12)
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Figure 5.9: Patient 1 output feedback controller with Γ = 50000

where the reference signal y and the patient’s BIS value ŷ contain N data points
over the course of the simulation. The residual error, rN for Patient 1 with the
previously discussed parameters is 0.0019. Other design results can be seen in
Tables 5.3 and 5.4.

Table 5.3: Patient 1 normalized residual errors: BIS tracking performance

ω/m 1/15 1/30 1/60
0.002 N/A 0.0027 0.0047
0.001 0.0042 0.0019 0.0022
0.0005 0.0039 0.0035 0.0027
0.0001 0.0067 0.0070 0.0069

A second metric used to evaluate controller performance is the total amount
of isoflurane required to attain the tracking performance. As noted before, larger
amounts of anesthetics used in surgery have been associated with negative long-
term patient outcomes [39, 40, 41]. Inhalational anesthetics, like isoflurane, are
delivered as a percentage by volume to an external respiratory circuit. This gas
mixture is then delivered to the lungs by a ventilation system, measured in liters/minute.
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Table 5.4: Patient 1 control effort: Isoflurane use in liters

ω/m 1/15 1/30 1/60
0.002 N/A 2.401 2.408
0.001 2.401 2.404 2.410
0.0005 2.406 2.409 2.416
0.0001 2.453 2.456 2.463

So, for example if the total fresh gas flow mixture from the machine is 2−4 l/min,
and the isoflurane is 1% (at an assumed mean alveolar concentration (MAC) of 1),
then 20−40 cc/min of isoflurane gas is being delivered to the respiratory circuit.
To estimate the relative quantities of isoflurane used, we assumed an average fresh
gas flow mixture delivery rate of 3 l/min at 1 MAC. The approximate isoflurane
use for Patient 1 is 2.40403 liters; isoflurane use for a comparable BIS reference
and simulation time resulting from previous linear parameter-varying control stud-
ies [42] was approximately 2.745 liters. The smaller amount of isoflurane used
by the L1-adaptive output feedback controller would be better for the patient than
the higher amount used by the LPV controller designed for Patient 1.

5.2.1.2 Tracking, with disturbances

We will treat the EP/BIS, EVAL/BIS, and LMA/BIS as disturbances to our ISO/BIS
system. The transfer functions for the disturbances model of Patient 1-sedated
state are:

BIS
EP

:
−0.2798s3−0.3321s2−0.01559s−0.0008389

s4 +0.1798s3 +0.1461s2 +0.01316s+0.0001649
(5.13)

BIS
EVAL

:
−1.538s3 +0.2385s2−0.1168s+0.003513

s4 +0.1798s3 +0.1461s2 +0.01316s+0.0001649
(5.14)

BIS
LMA

:
−0.02081s3 +1.765s2 +0.1646s+0.002294

s4 +0.1798s3 +0.1461s2 +0.01316s+0.0001649
(5.15)

Keeping all the parameters discussed above the same, simulations were run with
some disturbances to the patient. Figure 5.10 illustrates the effects these distur-
bances have on the BIS trajectory of Patient 1.
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Figure 5.10: Disturbances’ effect on Patient 1’s BIS
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Figure 5.11: Patient 1 output feedback controller with Γ = 50000 w/disturbances

Figure 5.11 shows the closed-loop performance of the L1-adaptive controller
used on Patient 1 when disturbances are introduced. The normalized residual error
computed using (5.12) is 0.0022 and the amount of isoflurane used is 2.409 liters.
For both simulations with and without disturbances, the system has a non-zero
initial condition which leads to an exponentially decaying term in the control and
system state signal; this does not affect the performance of the system throughout.
In Tables 5.5 and 5.6 we present some results demonstrating various controller
designs’ performance in terms of residual error terms and isoflurane consumption
with disturbances acting on the patient.

Table 5.5: Patient 1 with disturbances normalized residual errors: BIS tracking
performance

ω/m 1/15 1/30 1/60
0.002 N/A 0.0041 0.0065
0.001 0.0059 0.0022 0.0024
0.0005 0.0048 0.0045 0.0028
0.0001 0.0075 0.0080 0.0075

42



www.manaraa.com

Table 5.6: Patient 1 with disturbances control effort: Isoflurane use in liters

ω/m 1/15 1/30 1/60
0.002 N/A 2.401 2.409
0.001 2.401 2.404 2.410
0.0005 2.406 2.409 2.416
0.0001 2.453 2.456 2.462

5.2.1.3 MAP performance, with disturbances

The mean arterial pressure is not an output we would like to have track a specific
reference trajectory. Instead, during surgery, there is a range the anesthesiologist
would like the patient’s MAP to remain in. In our study, we would like the MAP
to stay in the 60 to 110 mmHg range. The MAP transfer functions for the model
of Patient 1-sedated state are:

ISO to MAP:
−0.04938

s+0.005276
(5.16)

EP to MAP:
0.0126

s+0.005276
(5.17)

EVAL to MAP:
−0.1595

s+0.005276
(5.18)

LMA to MAP:
0.4991

s+0.005276
(5.19)
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Figure 5.12: BIS reference tracking: Patient 1 BIS and MAP performance
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Figure 5.12 illustrates the BIS and MAP performance achieved when the L1-
adaptive output feedback controller with the previously detailed parameters is ap-
plied to Patient 1. Clearly, Patient 1’s MAP is well within our desired range
throughout the entire simulation.

5.2.1.4 Robustness to Inter-patient Variability

This controller design was then simulated using the models for Patients 2, 3, 5, 6,
and 7 to evaluate inter-patient design robustness. That is, we applied the controller
designed for Patient 1 on Patients 2, 3, 5, 6, and 7. In general, the patients’
BIS levels tracked the desired reference profile closely, regardless of whether the
applied controller was that specifically designed for them or not. Tables 5.7 and
5.8 detail the tracking performance and control effort when the controller designed
for Patient 1 is applied to the models of Patients 2, 3, 5, 6, and 7.

Table 5.7: Normalized residual errors with Patient 1 control

Patient/Controller 1
2 0.0062
3 0.0022
5 0.0016
6 0.0036
7 0.0064

Table 5.8: Isoflurane use in liters with Patient 1 control

Patient/Controller 1
2 2.859
3 2.232
5 2.400
6 3.292
7 2.147
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Figure 5.13: BIS reference tracking: Patient 1 robustness to inter-patient
variability

Figure 5.13 illustrates how robust this controller design is to inter-patient vari-
ability by comparing the performance when Patient 1’s controller is applied to
Patients 1, 5, and 6. It is important to note that the controller is exactly the same
between the patients.

5.2.2 Patient 2 L1-Adaptive Control-Output Feedback

As previously discussed, black box models were constructed by using the MAT-
LAB n4sid command on partitioned patient data, and a MATLAB m-file was made
to identify the values for all parameters required to simulate the controlled system
detailed in (2.4), and for the L1-adaptive controller given by (3.25), (3.26), and
(3.29). Simulink was then used to simulate the closed-loop system and obtain the
performance results. The model parameters for Patient 2-sedated state are:

A =


−0.0026 −0.0279 −0.0025 −0.0244
0.0177 −0.0864 0.0056 −0.2098
−0.0008 −0.0104 0.0066 0.1733
0.0013 −0.0431 −0.1563 −0.1275

 ,
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B =


0.0003
0.0810
0.0015
0.0015

 ,

C =


237.2070
−11.6216

0.5634
−2.9660

 (5.20)

5.2.2.1 Tracking, no disturbances

The transfer function obtained from the model given in (5.20) is:

BIS
ISO

:
0.05594s3 +0.001404s2 +0.002921s−0.0002398

s4 +0.2099s3 +0.02877s2 +0.002828s+2.01e−05
(5.21)

As in Patient 1’s case, it is assumed the ISO to BIS transfer function is strictly
proper. We set P = 1, ∆ = 100 and Γ = 50000. The L1-adaptive controller given
by (3.25), (3.26), and (3.29) is used to track a given reference BIS trajectory, r(t).
If, using (2.7), we set m = 1/60 and set ω = 0.002, using (3.9), (3.10) is strictly
proper and BIBO stable as required. In Figure 5.14, we show the simulation
results for the L1-adaptive controller applied to the dynamic response model for
Patient 2.

As can be seen in Figure 5.14, using L1-adaptive output feedback control de-
sign previously discussed, we are able to achieve our desired tracking perfor-
mance quickly with little tracking error. Using this particular controller design,
we achieve a normalized error residual, given in (5.12), of 0.0050. The approx-
imate isoflurane used for Patient 2 to obtain the achieved performance is 2.852
liters. Tables 5.9 and 5.10 detail the achieved performance with various controller
designs for Patient 2.
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Figure 5.14: BIS reference tracking: Patient 2 output feedback controller with
Γ = 50000

Table 5.9: Patient 2 normalized residual errors: BIS tracking performance

ω/m 1/15 1/30 1/60
0.01 N/A 0.0055 0.0052
0.008 0.0064 0.0056 0.0055
0.004 0.0064 0.0050 0.0053
0.002 0.0063 0.0055 0.0050
0.001 0.0073 0.0062 0.0060
0.0005 0.0077 0.0077 0.0076
0.0001 0.0147 0.0146 0.0151
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Table 5.10: Patient 2 control effort: Isoflurane use in liters

ω/m 1/15 1/30 1/60
0.01 N/A 2.856 2.840
0.008 2.863 2.858 2.843
0.004 2.867 2.859 2.847
0.002 2.860 2.857 2.852
0.001 2.860 2.859 2.861
0.0005 2.879 2.881 2.885
0.0001 3.067 3.069 3.074

5.2.2.2 Tracking, with disturbances

Just as before, the EP, EVAL, and LMA are treated as disturbance inputs to our
ISO/BIS system. The transfer functions for the disturbances model of Patient
2-sedated state are:

BIS
EP

:
−0.6242s3−0.03338s2−0.002487s−0.0004854

s4 +0.2099s3 +0.02877s2 +0.002828s+2.01e−05
(5.22)

BIS
EVAL

:
0.135s3 +0.1622s2−0.0002242s+0.0009576

s4 +0.2099s3 +0.02877s2 +0.002828s+2.01e−05
(5.23)

BIS
LMA

:
−0.87111s3 +0.1013s2−0.008009s+0.0003772

s4 +0.2099s3 +0.02877s2 +0.002828s+2.01e−05
(5.24)

The disturbances’ effects on the BIS output are exactly the same as those of
Patient 1. This was done for comparison and analysis purposes. Maintaining the
same control design as discussed above, simulations were run with disturbance
inputs.

Figure 5.15 shows the closed-loop performance of the L1-adaptive controller
designed for Patient 2 when disturbances are introduced to the system. This par-
ticular system results in a calculated normalized residual error with a value of
0.0060. Approximate isoflurane use for Patient 2 is 2.852 liters. For both simu-
lations with and without disturbances, the system has a non-zero initial condition
which leads to an exponentially decaying term in the control and system state sig-
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Figure 5.15: BIS reference tracking: Patient 2 output feedback controller with
Γ = 50000 w/ disturbances

nal; this does not affect the performance of the system throughout. In Tables 5.11
and 5.12 we have some results demonstrating how different controller designs
perform with disturbances.
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Table 5.11: Patient 2 with disturbances normalized residual errors: BIS tracking
performance

ω/m 1/15 1/30 1/60
0.01 N/A 0.0071 N/A
0.008 N/A 0.0071 0.0063
0.004 0.0087 0.0070 0.0057
0.002 0.0086 0.0076 0.0060
0.001 0.0085 0.0084 0.0071
0.0005 0.0093 0.0092 0.0086
0.0001 0.0156 0.0159 0.0159

Table 5.12: Patient 2 with disturbances control effort: Isoflurane use in liters

ω/m 1/15 1/30 1/60
0.01 N/A 2.862 N/A
0.008 N/A 2.863 2.837
0.004 2.891 2.866 2.844
0.002 2.867 2.862 2.852
0.001 2.861 2.859 2.860
0.0005 2.879 2.881 2.884
0.0001 3.068 3.070 3.074
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5.2.2.3 MAP performance, with disturbances

Unlike the BIS, the mean arterial pressure is not an output we would like to have
track a specific reference trajectory. Instead, during surgery, there is an ideal range
the anesthesiologist would like the patient’s MAP to remain in. In our study, we
would like the MAP to stay in the 60 to 110 mmHg range. The MAP transfer
functions for the model of Patient 2-sedated state are:

ISO to MAP:
0.09125s2−0.003802s+0.001702

s3 +0.06737s2 +0.1591s+0.0003529
(5.25)

EP to MAP:
−0.0304s2−0.01384s−0.002925

s3 +0.06737s2 +0.1591s+0.0003529
(5.26)

EVAL to MAP:
−0.02734s2−0.01166s−0.002819

s3 +0.06737s2 +0.1591s+0.0003529
(5.27)

LMA to MAP:
−0.1536s2−0.1712s−0.0122

s3 +0.06737s2 +0.1591s+0.0003529
(5.28)

Figure 5.16 illustrates the BIS and MAP performance achieved when the L1-
adaptive output feedback controller with the previously detailed parameters is ap-
plied to Patient 2. Clearly, Patient 2’s MAP is well within our desired range
throughout the entire simulation.
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Figure 5.16: BIS reference tracking: Patient 2 BIS and MAP performance
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5.2.2.4 Robustness to Inter-patient Variability

This controller design was then simulated using the models for Patients 1, 3, 5,
6, and 7 to evaluate inter-patient design robustness. That is, we applied the con-
troller designed for Patient 2 on Patients 1, 3, 5, 6, and 7. Except for Patient 5,
the patients’ BIS levels tracked the desired reference profile closely, regardless
of whether the applied controller was that specifically designed for them or not.
Tables 5.13 and 5.14 detail the tracking performance and control effort when the
controller designed for Patient 2 is applied to the models of Patients 1, 3, 5, 6, and
7.

Table 5.13: Normalized residual errors with Patient 2 control

Patient/Controller 2
1 0.0047
3 0.0030
5 N/A
6 0.0027
7 0.0029

Table 5.14: Isoflurane use in liters with Patient 2 control

Patient/Controller 2
1 2.408
3 2.224
5 N/A
6 3.292
7 2.141

5.2.3 Patient 3 L1-Adaptive Control-Output Feedback

For Patient 3, models were constructed through the MATLAB n4sid command on
partitioned patient data. A MATLAB m-file was created to identify the values for
all parameters required for the system in (2.4), and for the L1-adaptive controller
given by (3.25), (3.26), and (3.29). Simulink was then used to simulate the closed-
loop systems.
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The model parameters for Patient 3-sedated state are:

A =


−0.0010 −0.0276 0.0235 0.0076
0.0088 −0.0494 0.1102 0.0505
0.0018 0.0445 −0.1327 −0.3432
0.0004 −0.0125 0.2824 0.0256

 ,

B =


−0.0082
−0.0185
−0.0166
−0.0381

 ,

C =


173.0765
−9.0676
2.5768
−2.4800

 (5.29)

5.2.3.1 Tracking, no disturbances

The transfer function for the model of Patient 3-sedated state are:

BIS
ISO

:
−1.2s3−0.1397s2−0.06413s−0.0002461

s4 +0.1575s3 +0.09489s2 +0.003838s+2.527e−05
(5.30)

Like Patients 2 and 3, it is assumed the ISO to BIS transfer function is strictly
proper. We set P = 1 and conservatively set ∆ = 100 and Γ = 50000. The L1-
adaptive controller given by (3.25), (3.26), and (3.29) is used to track a given
reference BIS trajectory, r(t). Using (2.7) and (3.9), we set m = 1/15 and for set
ω = 0.008, respectively. Using this, we can show that (3.10) is strictly proper and
BIBO stable as required. Simulation results for the L1-adaptive controller applied
to the dynamic response model for Patient 3 can be seen in Figure 5.17.

As can be seen in Figure 5.17, the L1-adaptive output feedback control design
achieves the desired tracking performance quickly with little tracking error. This
particular design when used to control Patient 3’s BIS trajectory achieves a nor-
malized error residual of 0.0015. The approximate isoflurane amount required to
achieve this tracking performance for Patient 3 is 2.197 liters.
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Table 5.15: Patient 3 normalized residual errors: BIS tracking performance

ω/m 1/15 1/30 1/60
0.16 8.662e-04 0.0014 0.0030
0.08 9.866e-04 0.0011 0.0019
0.04 9.944e-04 0.0011 0.0017
0.02 0.0012 0.0013 0.0017
0.01 0.0014 0.0016 0.0018
0.008 0.0015 0.0016 0.0019
0.004 0.0013 0.0020 0.0023
0.002 0.0048 0.0024 0.0030
0.001 0.0053 0.0022 0.0039
0.0005 0.0066 0.0062 0.0053
0.0001 0.0128 0.0128 0.0133

Table 5.16: Patient 3 control effort: Isoflurane use in liters

ω/m 1/15 1/30 1/60
0.16 2.278 2.365 2.536
0.08 2.218 2.250 2.328
0.04 2.198 2.212 2.241
0.02 2.194 2.200 2.216
0.01 2.196 2.200 2.211
0.008 2.197 2.202 2.211
0.004 2.201 2.206 2.216
0.002 2.210 2.215 2.224
0.001 2.228 2.232 2.242
0.0005 2.263 2.268 2.277
0.0001 2.481 2.483 2.487
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Figure 5.17: BIS reference tracking: Patient 3 output feedback controller with
Γ = 50000

5.2.3.2 Tracking, with disturbances

Again, the EP/BIS, EVAL/BIS, and LMA/BIS are treated as disturbances to our
ISO/BIS system. The transfer functions for the disturbances model of Patient
3-sedated state are:

BIS
EP

:
0.3388s3−0.279s2 +0.01427s−0.0002118

s4 +0.1575s3 +0.09489s2 +0.003838s+2.527e−05
(5.31)

BIS
EVAL

:
−0.6152s3 +0.1421s2−0.03961s+0.002399

s4 +0.1575s3 +0.09489s2 +0.003838s+2.527e−05
(5.32)

BIS
LMA

:
2.315s3 +1.921s2 +0.1231s+0.001609

s4 +0.1575s3 +0.09489s2 +0.003838s+2.527e−05
(5.33)

As before, the disturbances effects on the BIS output are exactly the same as
those of Patient 1. This was done for comparison and analysis purposes. Main-
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taining the same control design as discussed above, simulations were run with
disturbance affecting Patient 3’s BIS trajectory.

Figure 5.18: BIS reference tracking: Patient 3 output feedback controller with
Γ = 50000 w/ disturbances

Figure 5.18 shows the closed-loop performance of the L1-adaptive controller
used on Patient 3 when disturbances are introduced. This particular system results
in a calculated normalized residual error with a value of 0.0016. Approximate
isoflurane use for Patient 3 is 2.197 liters. Note, for both simulations with and
without disturbances, the system has a non-zero initial condition which leads to
an exponentially decaying term in the control and system state signal; this does
not affect the performance of the system throughout.

In Tables 5.17 and 5.18 we have some results of various design configurations
for dealing with disturbances.

5.2.3.3 MAP performance, with disturbances

We now examine how the L1-adaptive output feedback controller previously dis-
cussed affects the mean arterial pressure of Patient 3. Again, there is a desired
range the anesthesiologist would like the patient’s MAP to remain in. In our study,
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Table 5.17: Patient 3 with disturbances normalized residual errors: BIS tracking
performance

ω/m 1/15 1/30 1/60
0.16 9.2918e-04 0.0015 0.0032
0.08 0.0010 0.0012 0.0019
0.04 0.0010 0.0011 0.0017
0.02 0.0013 0.0014 0.0017
0.01 0.0015 0.0016 0.0018
0.008 0.0016 0.0016 0.0019
0.004 0.0017 0.0021 0.0023
0.002 0.0049 0.0030 0.0030
0.001 0.0056 0.0026 0.0039
0.0005 0.0069 0.0069 0.0054
0.0001 0.0135 0.0135 0.0138

Table 5.18: Patient 3 with disturbances control effort: Isoflurane use in liters

ω/m 1/15 1/30 1/60
0.16 2.276 2.360 2.523
0.08 2.218 2.248 2.323
0.04 2.199 2.212 2.241
0.02 2.195 2.201 2.218
0.01 2.196 2.201 2.213
0.008 2.197 2.202 2.213
0.004 2.201 2.206 2.217
0.002 2.210 2.215 2.225
0.001 2.228 2.233 2.242
0.0005 2.264 2.268 2.277
0.0001 2.484 2.486 2.489
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we would like the MAP to stay in the 60 to 110 mmHg range. The MAP transfer
functions for the model of Patient 3-sedated state are:

ISO to MAP:
1.03s3 +0.09138s2 +0.01881s+0.0004485

s4 +0.3259s3 +0.09716s2 +0.003421s+3.747e−07
(5.34)

EP to MAP:
−0.06771s3 +0.05368s2−0.002627s+0.0002745

s4 +0.3259s3 +0.09716s2 +0.003421s+3.747e−07
(5.35)

EVAL to MAP:
0.0358s3 +0.01821s2 +0.002357s+0.0003508

s4 +0.3259s3 +0.09716s2 +0.003421s+3.747e−07
(5.36)

LMA to MAP:
−0.4936s3 +0.8605s2 +0.01085s+0.001188

s4 +0.3259s3 +0.09716s2 +0.003421s+3.747e−07
(5.37)

Figure 5.19 illustrates the BIS and MAP performance achieved when the L1-
adaptive output feedback controller with the previously detailed parameters is ap-
plied to Patient 3. Clearly, Patient 3’s MAP is well within our desired range
throughout the entire simulation.
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Figure 5.19: BIS reference tracking: Patient 3 BIS and MAP performance
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5.2.3.4 Robustness to Inter-patient Variability

Similarly to our examination of Patient 1’s controller, Patient 3’s controller design
was then simulated using the models for Patients 1, 2, 5, 6, and 7 to evaluate inter-
patient design robustness. That is, we applied the controller designed for Patient 3
on Patients 1, 2, 5, 6, and 7. When Patients 2, 6, and 7 use the Patient 3 controller,
their BIS levels tracked the desired reference profile closely. Tables 5.19 and 5.20
detail the tracking performance and control effort when the controller designed for
Patient 3 is applied to the models of Patients 1, 2, 5, 6, and 7. Note that Patients
1 and 5 resulted in unstable H(s) when Patient 3’s controller is applied. This is
due to the fact that Patient 3’s controller is more aggressive than most controllers
investigated and results in an unstable H(s), given in (3.10).

Table 5.19: Normalized residual errors with Patient 3 Control

Patient/Controller 3
1 N/A
2 0.0064
5 N/A
6 0.0024
7 0.0044

Table 5.20: Isoflurane use in liters with Patient 3 control

Patient/Controller 3
1 N/A
2 2.863
5 N/A
6 3.288
7 2.143

5.2.4 Patient 5 L1-Adaptive Control-Output Feedback

For Patient 5, we constructed black box models through the use of the MATLAB
n4sid command on partitioned patient data. A MATLAB m-file was created and
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then used to calculate the values for all parameters required for the system in (2.4),
and for the L1-adaptive controller given by (3.25), (3.26), and (3.29). Simulink
was then used to simulate the closed-loop systems.

The model parameters for Patient 5-sedated state are:

A =


−0.0553 0.0037 0.0329 −0.0265
0.6119 −0.5097 0.1335 0.2688
0.9460 −0.6811 −0.0161 0.5125
−0.6282 0.3854 −0.1738 −0.1729

 ,

B =


−0.0070
0.0833
0.1311
−0.0873

 ,

C =


139.8580
−9.8886
0.4684
−0.5230

 (5.38)

5.2.4.1 Tracking, no disturbances

The transfer function for the model of Patient 5-sedated state are:

BIS
ISO

:
−2.221s3 +0.2494s2−0.09021s−0.002341

s4 +0.1496s3 +0.06726s2 +0.006355s+5.131e−05
(5.39)

Again, it is assumed the ISO to BIS transfer function is strictly proper. We set
P = 1, and conservatively set ∆ = 100 and Γ = 50000. The L1-adaptive controller
given by (3.25), (3.26), and (3.29) is used to track a given reference BIS trajectory,
r(t). If, using (2.7), we set m = 1/30 and we set ω = 0.002 for (3.9), we attain
an H(s) in (3.10) that is strictly proper and BIBO stable as required. Simulation
results for the L1-adaptive controller applied to the dynamic response model for
Patient 5 can be seen in Figure 5.20.

As can be seen in Figure 5.20, the L1-adaptive output feedback control design
achieves the desired tracking performance quickly with little tracking error. Com-
pared to other model and contol design pairs, this system has one of the smallest
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Figure 5.20: BIS reference tracking: Patient 5 output feedback controller with
Γ = 50000

values of rN (5.12) with a value of 0.0012. The approximate isoflurane use for
Patient 5 is 2.397 liters; isoflurane use for a comparable BIS reference and sim-
ulation time resulting from our previous linear parameter-varying control studies
was approximately 2.85 liters. The smaller amount of isoflurane used by the L1-
adaptive output feedback controller would be better for the patients than what the
LPV controller used.

Table 5.21: Patient 5 normalized residual errors: BIS tracking performance

ω/m 1/15 1/30 1/60
0.004 7.1646e-04 N/A N/A
0.002 0.0015 0.0012 N/A
0.001 0.0021 0.0016 0.0020
0.0005 0.0029 0.0030 0.0027
0.0001 0.0073 0.0073 0.0074
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Table 5.22: Patient 5 control effort: Isoflurane use in liters

ω/m 1/15 1/30 1/60
0.004 2.392 N/A N/A
0.002 2.393 2.397 N/A
0.001 2.397 2.400 2.407
0.0005 2.403 2.406 2.413
0.0001 2.455 2.459 2.465

5.2.4.2 Tracking, with disturbances

For Patient 5, the EP/BIS, EVAL/BIS, and LMA/BIS, as with the others in our pa-
tient set, are treated as disturbances to our ISO/BIS system. The transfer functions
for the disturbances model of Patient 5-sedated state are:

BIS
EP

:
−0.2798s3−0.3321s2−0.01559s−0.0008389

s4 +0.1798s3 +0.1461s2 +0.01316s+0.0001649
(5.40)

BIS
EVAL

:
−1.538s3 +0.2385s2−0.1168s+0.003513

s4 +0.1798s3 +0.1461s2 +0.01316s+0.0001649
(5.41)

BIS
LMA

:
−0.02081s3 +1.765s2 +0.1646s+0.002294

s4 +0.1798s3 +0.1461s2 +0.01316s+0.0001649
(5.42)

Note, the disturbances used are exactly the same as those in the Patient 1 simu-
lation. This was done to subject the system to the same disturbances to allow for
comparison and analysis purposes.

Keeping all the parameters discussed above the same, simulations were run
with some disturbances to the patient. Figure 5.21 illustrates the effects these
disturbances have on the BIS of Patient 5. Figure 5.22 shows the closed-loop
performance of the L1-adaptive controller used on Patient 5 when disturbances
are introduced. This particular system results in a calculated normalized residual
error (5.12) with a value of 0.0012. The approximate isoflurane use for Patient 5
is 2.397 liters. For both simulations with and without disturbances, the system has
a non-zero initial condition which leads to an exponentially decaying term in the
control and system state signal; this does not affect the performance of the system
throughout.
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Figure 5.21: Disturbances effect on Patient 5’s BIS
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Figure 5.22: BIS reference tracking: Patient 5 output feedback controller with
Γ = 50000 w/ disturbances

Tables 5.23 and 5.24 give tracking performance and control effort results with
disturbances to the system achieved by different controller designs (i.e., C(s) fil-
ters and M(s) reference transfer function combinations).

Table 5.23: Patient 5 with disturbances normalized residual errors: BIS tracking
performance

ω/m 1/15 1/30 1/60
0.004 8.2566e-4 N/A N/A
0.002 0.0018 0.0012 N/A
0.001 0.0027 0.0017 0.0019
0.0005 0.0036 0.0038 0.0027
0.0001 0.0079 0.0082 0.0079
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Table 5.24: Patient 5 with disturbances control effort: Isoflurane use in liters

ω/m 1/15 1/30 1/60
0.004 2.392 N/A N/A
0.002 2.393 2.397 N/A
0.001 2.397 2.400 2.406
0.0005 2.403 2.406 2.413
0.0001 2.455 2.459 2.465

5.2.4.3 MAP performance, with disturbances

For Patient 5, the LMA and EP events occurred prior to the patient passing be-
low the BIS threshold value of 70, so these events are not included in the data
associated with the sedated state.

The MAP transfer functions for the model of Patient 5-sedated state are:

ISO to MAP:
−0.073

s+0.005184
(5.43)

EVAL to MAP:
0.2056

s+0.005184
(5.44)
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Figure 5.23: BIS reference tracking: Patient 5 BIS and MAP performance
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Figure 5.23 shows the BIS and MAP simulated trajectories achieved when the
L1-adaptive output feedback controller with the parameters used in Patient 5’s
controller as previously discussed when examining tracking performance with no
disturbances. Patient 5’s MAP clearly stays within the 60 to 110 mmHg range for
the entirety of the simulation. Again, note the LMA and EP disturbances did not
occur in the sedated data.

5.2.4.4 Robustness to Inter-patient Variability

Similarly to our examination of the other controllers robustness to interpatient
variability, Patient 5’s controller design was then simulated using the models for
Patients 1, 2, 3, 6, and 7 to evaluate inter-patient design robustness. That is, we
applied the controller designed for Patient 5 on Patients 1, 2, 3, 6, and 7. For every
model in our patient set, the patients’ BIS levels tracked the desired reference
profile closely, regardless of whether the applied controller was that specifically
designed for them or not. Tables 5.25 and 5.26 detail the tracking performance and
control effort when the controller designed for Patient 5 is applied to the models
of Patients 1, 2, 3, 6, and 7.
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Table 5.25: Normalized residual errors with Patient 5 control, no disturbances

Patient/Controller 5
1 0.0027
2 0.0055
3 0.0024
6 0.0027
7 0.0055

Table 5.26: Isoflurane use in liters with Patient 5 control, no disturbances

Patient/Controller 5
1 2.401
2 2.857
3 2.215
6 3.285
7 2.137

71



www.manaraa.com

Figure 5.24 illustrates how robust this controller design is to inter-patient vari-
ability. It is important to note that the controller is exactly the same between the
patients.

Figure 5.24: BIS reference tracking: Patient 5 robustness to inter-patient
variability, no disturbances

5.2.5 Patient 6 L1-Adaptive Control-Output Feedback

For Patient 6, models were constructed through the MATLAB n4sid command on
partitioned patient data. A MATLAB m-file was created to identify the values for
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all parameters required for the system in (2.4), and for the L1-adaptive controller
given by (3.25), (3.26), and (3.29). Simulink was then used to simulate the closed-
loop systems.

The model parameters for Patient 6-sedated state are:

A =


−0.0055 0.0096 −0.0862 0.0357
0.0039 −0.0137 −0.1087 0.1693
0.0118 −0.0580 −0.1745 0.0230
0.0001 −0.0924 0.1051 −0.0576

 ,

B =


0.0025
0.0072
0.0267
0.0151

 ,

C =


137.6774
−8.9751
−5.8180
3.9340

 . (5.45)

5.2.5.1 Tracking, no disturbances

The transfer function for the model of Patient 6-sedated state are:

BIS
ISO

:
0.1836s3−0.1526s2 +0.003364s−0.0005311

s4 +0.2513s3 +0.02248s2 +0.003408s+2.944e−05
(5.46)

Again, it is assumed the ISO to BIS transfer function is strictly proper. We
conservatively set P = 1 and chose ∆ = 100 and Γ = 50000. The L1-adaptive
controller given by (3.25), (3.26), and (3.29) is applied to track a desired sedated
BIS trajectory, r(t). If for M(s) in (2.7) we set m = 1/30 and C(s) in (3.9) set
ω = 0.004, we can show that (3.10) is strictly proper and BIBO stable as required.
Simulation results for the L1-adaptive controller applied to the dynamic response
model for Patient 6 can be seen in Figure 5.25.

As can be seen in Figure 5.25, the L1-adaptive output feedback control design
achieves the desired tracking performance quickly with little tracking error. This
particular design achieves a normalized error residual of 0.0021. The approximate
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Figure 5.25: BIS reference tracking: Patient 6 output feedback controller with
Γ = 50000

isoflurane use for Patient 6 is 3.285 liters.

Table 5.27: Patient 6 normalized residual errors: BIS tracking performance

ω/m 1/15 1/30 1/60
0.01 0.0023 0.0020 0.0020
0.008 0.0024 0.0021 0.0019
0.004 0.0027 0.0021 0.0020
0.002 0.0032 0.0027 0.0027
0.001 0.0039 0.0036 0.0035
0.0005 0.0048 0.0048 0.0048
0.0001 0.0116 0.0119 0.0122

5.2.5.2 Tracking, with disturbances

Just as before, the EP, EVAL, and LMA are treated as disturbance inputs to our
ISO/BIS system. The transfer functions for the disturbances model of Patient
6-sedated state are:
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Table 5.28: Patient 6 control effort: Isoflurane use in liters

ω/m 1/15 1/30 1/60
0.01 3.289 3.287 3.287
0.008 3.288 3.286 3.288
0.004 3.284 3.285 3.289
0.002 3.283 3.285 3.292
0.001 3.288 3.292 3.300
0.0005 3.303 3.307 3.315
0.0001 3.416 3.418 3.423

BIS
EP

:
−10.86s3−7.739s2 +0.445s−0.03246

s4 +0.2513s3 +0.02248s2 +0.003408s+2.944e−05
(5.47)

BIS
EVAL

:
−0.1031s3 +0.1144s2−0.007212s+0.001873

s4 +0.2513s3 +0.02248s2 +0.003408s+2.944e−05
(5.48)

BIS
LMA

:
1.098s3 +0.04537s2 +0.008963s+0.00128

s4 +0.2513s3 +0.02248s2 +0.003408s+2.944e−05
(5.49)

As before, the disturbances effects on the BIS output are exactly the same as
those of Patient 1. This was done for comparison and analysis purposes. Maintain-
ing the same control design as discussed above, simulations were run with distur-
bance inputs. Figure 5.26 shows the closed-loop performance of the L1-adaptive
controller used on Patient 6 when disturbances are introduced. This particular
system results in a calculated normalized residual error with a value of 0.0032.
Approximate isoflurane use for Patient 6 is 3.284 liters. For both simulations with
and without disturbances, the system has a non-zero initial condition which leads
to an exponentially decaying term in the control and system state signal; this does
not affect the performance of the system throughout.

Tables 5.29 and 5.30 detail the performance attained by different controller
configurations with disturbances to the system.
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Table 5.29: Patient 6 with disturbances normalized residual errors: BIS tracking
performance

ω/m 1/15 1/30 1/60
0.01 0.0032 0.0029 0.0027
0.008 0.0034 0.0029 0.0027
0.004 0.0040 0.0032 0.0027
0.002 0.0042 0.0037 0.0035
0.001 0.0051 0.0049 0.0043
0.0005 0.0065 0.0063 0.0059
0.0001 0.0122 0.0128 0.0130

Table 5.30: Patient 6 with disturbances control effort: Isoflurane use in liters

ω/m 1/15 1/30 1/60
0.01 3.288 3.285 3.286
0.008 3.287 3.285 3.287
0.004 3.285 3.284 3.289
0.002 3.283 3.285 3.293
0.001 3.289 3.292 3.300
0.0005 3.303 3.307 3.315
0.0001 3.416 3.419 3.423
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Figure 5.26: BIS reference tracking: Patient 6 output feedback controller with
Γ = 50000 w/ disturbances

5.2.5.3 MAP performance, with disturbances

The MAP transfer functions for the model of Patient 6-sedated state are:

ISO to BP:
2.006s−0.008426

s2 +0.1101s+0.0008181
(5.50)

EVAL to BP:
−0.3818s−0.06841

s2 +0.1101s+0.0008181
(5.51)

LMA to BP:
−2.94s+0.1161

s2 +0.1101s+0.0008181
(5.52)
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Figure 5.27: BIS reference tracking: Patient 6 BIS and MAP performance
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Note, no EP event occurred when the BIS level of Patient 6 was below the
threshold value of 70. As a result we do not have a transfer function for its effect
on the BIS level. Figure 5.27 illustrates the BIS and MAP simulated trajectories
when the controller designed for Patient 6 is applied. Here, the patient’s MAP
does drop below the minimum of the desired range a few times but never exceed
the desired maximum bound.

5.2.5.4 Robustness to Inter-patient Variability

Similarly to our previous discussions, Patient 6’s controller design was then simu-
lated using the models for Patients 1, 2, 3, 5, and 7 to evaluate inter-patient design
robustness. That is, we applied the controller designed for Patient 6 on Patients
1, 2, 3, 5, and 7. For Patients 2, 3, and 7, the patients’ BIS levels tracked the
desired reference profile closely, regardless of whether the applied controller was
that specifically designed for them or not. When applied to Patients 1 and 5, the
results were unsatisfactory. Upon closer examination, when m and ω are set as
they are for the controller designed for Patient 6, H(s) from (3.10) is not stable.
Tables 5.31 and 5.32 detail the tracking performance and control effort when the
controller designed for Patient 5 is applied to the models of Patients 1, 2, 3, 5, and
7. It is important to note that the controller is exactly the same for all patients.

Table 5.31: Normalized residual errors with Patient 6 control, no disturbances

Patient/Controller 6
1 N/A
2 0.0050
3 0.0020
5 N/A
7 0.0041
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Table 5.32: Isoflurane use in liters with Patient 6 control, no disturbances

Patient/Controller 6
1 N/A
2 2.859
3 2.206
5 N/A
7 2.136

5.2.6 Patient 7 L1-Adaptive Control-Output Feedback

The Patient 7-sedated models were constructed through the MATLAB n4sid com-
mand on partitioned patient data. A MATLAB m-file was created to identify the
values for all parameters required for the system in (2.4), and for the L1-adaptive
controller given by (3.25), (3.26), and (3.29). Simulink was then used to simulate
the closed-loop systems.

The model parameters for Patient 7-sedated state are:

A =


−0.0022 −0.0307 −0.0078 −0.0123
0.0165 −0.0759 −0.0776 −0.1197
−0.0009 0.0170 −0.0157 −0.2734
0.0016 0.0253 0.2479 0.0159

 ,

B =


−0.0016
−0.0078
−0.0118
0.0082

 ,

C =


175.3789
−10.2101
−0.8316
0.3883

 . (5.53)

5.2.6.1 Tracking, no disturbances

The transfer function for the model of Patient 7-sedated state are:
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BIS
ISO

:
−0.188s3 +0.02198s2−0.0101s−0.0005796

s4 +0.0779s3 +0.07254s2 +0.005276s+4.678e−05
(5.54)

Again, it is assumed the ISO to BIS transfer function is strictly proper. We
conservatively set P = 1 and chose ∆ = 100 and Γ = 50000. The L1-adaptive
controller given by (3.25), (3.26), and (3.29) is applied to track a desired sedated
BIS trajectory, r(t). If for M(s) in (2.7) we set m = 1/60 and C(s) in (3.9) set
ω = 0.004, we can show that (3.10) is strictly proper and BIBO stable as required.
Simulation results for the L1-adaptive controller applied to the dynamic response
model for Patient 7 can be seen in Figure 5.28.

Figure 5.28: BIS reference tracking: Patient 7 output feedback controller with
Γ = 50000

As can be seen in Figure 5.28, the L1-adaptive output feedback control design
achieves the desired tracking performance quickly with little tracking error. This
particular design achieves a normalized error residual of 0.0028. The approximate
isoflurane use for Patient 7 is 2.133 liters. Tables 5.33 and 5.34 summarize results
for different controller design configurations.
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Table 5.33: Patient 7 normalized residual errors: BIS tracking performance

ω/m 1/15 1/30 1/60
0.02 0.0042 N/A N/A
0.01 0.0043 0.0018 N/A
0.008 0.0044 0.0019 N/A
0.004 0.0048 0.0041 0.0028
0.002 0.0054 0.0055 0.0029
0.001 0.0065 0.0064 0.0056
0.0005 0.0079 0.0079 0.0072
0.0001 0.0134 0.0134 0.0133

Table 5.34: Patient 7 control effort: Isoflurane use in liters

ω/m 1/15 1/30 1/60
0.02 2.141 N/A N/A
0.01 2.143 2.136 N/A
0.008 2.143 2.136 N/A
0.004 2.140 2.136 2.133
0.002 2.137 2.137 2.141
0.001 2.144 2.147 2.154
0.0005 2.170 2.173 2.180
0.0001 2.372 2.375 2.380
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5.2.6.2 Tracking, with disturbances

Just as before, the EP, EVAL, and LMA are treated as disturbance inputs to our
ISO/BIS system. The transfer functions for the disturbances model of Patient
7-sedated state are:

BIS
EP

:
−10.65s3−6.611s2−0.01062s−0.3286

s4 +0.0779s3 +0.07254s2 +0.005276s+4.678e−05
(5.55)

BIS
EVAL

:
−1.497s3 +0.04269s2−0.1074s+0.002277

s4 +0.0779s3 +0.07254s2 +0.005276s+4.678e−05
(5.56)

BIS
LMA

:
0.5809s3−0.1163s2 +0.04041s+−0.005745

s4 +0.0779s3 +0.07254s2 +0.005276s+4.678e−05
(5.57)

As before, the disturbances effects on the BIS output are exactly the same as
those of Patient 1. This was done for comparison and analysis purposes. Main-
taining the same control design as previously discussed, simulations were run
with disturbance inputs. Figure 5.29 shows the closed-loop performance of the
L1-adaptive controller used on Patient 7 when disturbances are introduced. This
particular system results in a calculated normalized residual error with a value of
0.0030. Approximate isoflurane use for Patient 7 is 2.135 liters. For both simu-
lations with and without disturbances, the system has a non-zero initial condition
which leads to an exponentially decaying term in the control and system state
signal; this does not affect the performance of the system throughout.
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Figure 5.29: BIS reference tracking: Patient 7 output feedback controller with
Γ = 50000 w/ disturbances

In Tables 5.35 and 5.36 we have results of various design configurations for
BIS level tracking with disturbances to the patient.
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Table 5.35: Patient 7 with disturbances normalized residual errors: BIS tracking
performance

ω/m 1/15 1/30 1/60
0.02 0.0041 N/A N/A
0.01 0.0048 0.0022 N/A
0.008 0.0049 0.0025 N/A
0.004 0.0054 0.0049 0.0030
0.002 0.0064 0.0065 0.0037
0.001 0.0074 0.0075 0.0062
0.0005 0.0088 0.0088 0.0079
0.0001 0.0139 0.0142 0.0139

Table 5.36: Patient 7 with disturbances control effort: Isoflurane use in liters

ω/m 1/15 1/30 1/60
0.02 2.141 N/A N/A
0.01 2.145 2.138 N/A
0.008 2.146 2.139 N/A
0.004 2.147 2.140 2.135
0.002 2.142 2.140 2.142
0.001 2.146 2.148 2.154
0.0005 2.171 2.174 2.180
0.0001 2.374 2.377 2.381
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5.2.6.3 MAP performance, with disturbances

Mean arterial pressure measurements do not have to track a specific reference
trajectory. Instead, during surgery, there is a range the anesthesiologist would like
the patient’s MAP to remain in. In our study, we would like the MAP to stay in
the 60 to 110 mmHg range. The MAP transfer functions for the model of Patient
7-sedated state are:

ISO to MAP:
0.0805s2 +0.01302s+2.383e−05

s3 +0.1454s2 +0.0009549s+5.43e−07
(5.58)

EP to MAP:
−5.168e−14s2−7.208e−15s

s3 +0.1454s2 +0.0009549s+5.43e−07
(5.59)

EVAL to MAP:
−0.0872s2−0.01237s3.338e−05

s3 +0.1454s2 +0.0009549s+5.43e−07
(5.60)

LMA to MAP:
−1.521s2−0.03287s−0.0004821

s3 +0.1454s2 +0.0009549s+5.43e−07
(5.61)

Figure 5.30 illustrates the BIS and MAP performance achieved when the L1-
adaptive output feedback controller with the previously detailed parameters is ap-
plied to Patient 7. Clearly, Patient 7’s MAP is in our desired range for the first 60
minutes of the simulation, after which it drops below the desired minimum and
settles at approximately 45 mmHg. This is the only patient out of our set of 6 that
exhibits this out of range behavior.
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Figure 5.30: BIS reference tracking: Patient 7 BIS and MAP performance
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5.2.6.4 Robustness to Inter-patient Variability

As before, Patient 7’s controller design was then simulated using the models for
Patients 1, 2, 3, 5, and 6 to evaluate inter-patient design robustness. That is,
we applied the controller designed for Patient 7 on Patients 1, 2, 3, 5, and 6.
For Patients 2, 3, and 7, the patients’ BIS levels tracked the desired reference
profile closely, regardless of whether the applied controller was that specifically
designed for them or not. When applied to Patients 1 and 5, the results were
unsatisfactory. Upon closer examination, when m and ω are set as they are for
the controller designed for Patient 7, H(s) from (3.10) is not stable. Tables 5.37
and 5.38 detail the tracking performance and control effort when the controller
designed for Patient 7 is applied to the models of Patients 1, 2, 3, 5, and 6. It is
important to note that the controller is exactly the same for all patients.

Table 5.37: Normalized residual errors with Patient 7 control, no disturbances

Patient/Controller 7
1 N/A
2 0.0050
3 0.0020
5 N/A
6 0.0041

Table 5.38: Isoflurane use in liters with Patient 7 control, no disturbances

Patient/Controller 7
1 N/A
2 2.859
3 2.206
5 N/A
6 2.136

5.2.7 Effect of the order of filter C(s) on system performance

In this section we examine the effects that increasing the order of filter C(s) have
on the performance of the L1-adaptive output feedback scheme. When possible,
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it is desired that the oscillations in the control channel be minimized as this would
make implementation easier. We evaluated the extent of such oscillations and
tracking performance with first order and second order filter designs on a subset
of the patients. We present these preliminary findings below.

With the first-order filters, the control signals of Patients 1, 3, and 7 oscillate
more than is desired. While these signals do not oscillate at a high frequency, if
the oscillations in the control channel can be reduced, that is preferred.

An example of the closed-loop system behavior when simulating Patient 1’s
model with a first-order filter is shown in Figure 5.9. While the tracking perfor-
mance is good, the input signal ideally should be cleaner. The input signal does
not oscillate at a high frequency, but we would like to further minimize the extent
of oscillation as much as possible, as this would make real-world application eas-
ier; depending on hardware limitations, the device that delivers the anesthesia to
the patient may not be able to generate the same anesthesia profile as the control
signal if the signal oscillates at too large of a frequency. To address this problem,
a higher order filter C(s) is designed and applied to the same output predictor,
adaptive law, and control law as discussed in the previous sections. Simulating
the system with the filter given in equation (5.62) yields an rN value of 0.0032 and
results in 2.407 liters of isoflurane consumed.

C(s) =
0.0064

s2 +10s+0.0064
(5.62)

This second-order filter attains the tracking performance shown in figure 5.31.
The tracking performance is very similar to that obtained with the first-order sys-
tem, shown in figure 5.9, albeit with a cleaner input signal.

Another second-order Patient 1 filter design is

C(s) =
0.01

s2 +10s+0.01
. (5.63)

The attained normalized error residual rN with the filter given in (5.63) is
0.0031. The total amount of ISO consumed is 2.404 liters. Note, the second-order
filters C(s) given in (5.62) and (5.63) were designed to have a similar frequency
response to the first-order filter previously discussed in the Patient 1 L1-adaptive
output feedback controller design.

The Patient 3 system exhibits the most oscilliatory input signal of our sample
of 6 patients when the output-feedback scheme is applied. As with the Patient 1
model, we designed and implemented a second-order filter to determine possible
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Figure 5.31: BIS reference tracking: Patient 1 output feedback controller with
second-order filter (5.62)

improvement on the input signal. The filter given in equation (5.64) is designed to
give similar tracking performance as the first-order filter previously discussed for
the Patient 3 L1-adaptive output feedback controller design; this filter is applied
and simulated. Figure 5.33 illustrates the effects that the second order filter given
in equation (5.64) has on the Patient 3 system.

C(s) =
0.0064

s2 +0.288s+0.0064
, (5.64)

The attained error residual rN with filter (5.64) is 4.4948 ∗ 10−4. The total
amount of ISO consumed to follow the reference BIS trajectory is 2.302 liters.

Comparing these results with the performance of the system when using the
first order filter,

C(s) =
0.008

s+ .008
. (5.65)

for which 2.305 liters of isoflurane is consumed and an rN of 5.2742 ∗ 10−4, it
can be seen that using the second-order filter achieves similar performance with
approximately the same isoflurane consumption. However, the system input signal
has significantly less oscillation than with the first-order filter, with comparable
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Figure 5.32: BIS reference tracking: Patient 1 output feedback controller with
second-order filter (5.63)

performance. This fact is obviated by comparing Figures 5.33 and 5.17.
The Patient 7 system also exhibits an input signal that has more oscillatory

behavior than we desire. As with the Patients 1 and 3 models, we designed and
implemented a second-order filter to determine possible improvement on the input
signal. The filter given in equation (5.66) is designed to give similar step-response
performance as the first-order filter previously discussed for the Patient 7 L1-
adaptive output feedback controller design. this filter is applied and simulated.
Figure 5.34 demonstrates the effects that the second-order filter given in equation
(5.66) has on the Patient 7 system.

C(s) =
0.01

s2 +3s+0.01
, (5.66)
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Figure 5.33: BIS reference tracking: Patient 3 output feedback controller with
second-order filter (5.64)

The attained error residual rN with filter (5.66) is 0.0044. The total amount of ISO
consumed to follow the reference BIS trajectory is 2.135 liters.

Comparing these results with the performance of the system when using the
first order filter,

C(s) =
0.004

s+ .004
. (5.67)

for which 2.133 liters of isoflurane is consumed and an rN of 0.0028, it can be
seen that using the second-order filter achieves similar performance with approx-
imately the same isoflurane consumption. However, the system input signal has
significantly less oscillation than with the first-order filter, with comparable per-
formance. This fact is obviated by comparing Figures 5.34 and 5.28.

With second-order filters, it appears we can attain nearly identical tracking per-
formance (and depending on the patient model and how the filter is designed,
improved performance) and improved control effort performance. The input sig-
nals are much cleaner in that they have reduced oscillation than the first-order
filters which yield similar tracking performance. This is particularly useful since
this makes the controller more feasible and easier to implement in real-world en-
vironments.
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Figure 5.34: BIS reference tracking: Patient 7 output feedback controller with
second-order filter (5.66)

5.3 LPV vs. L1-adaptive control performance

An LPV control approach presented and discussed in [42]. In this subsection we
compare the resulting performance results.

In terms of reference tracking performance, the L1-adaptive controllers exhibit
better tracking performance than the LPV controllers. Comparing the tracking
results, for example as shown in Figures 5.35, 5.36, and 5.37, it appears that
the L1-adaptive control schemes for the most part attain and follow the desired
BIS reference, but the LPV controllers only maintain the output signals near the
desired BIS levels. The normalized error residuals for all three control scheme
can be seen in Table 5.39.

In Table 5.40, the estimated control effort required for each of the three control
schemes are given. The L1-adaptive schemes require less anesthesia in call cases
except Patient 6. However, note that in the LPV study, Patient 6’s BIS never drops
below 60. In both L1-adaptive simulations, the patient’s BIS spends a significant
portion of the trial time at or below a BIS level of 50.

Also of interest is a comparison of the two control approaches in robustness to
interpatient variability. The results given in [42] indicate that the LPV controller
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Table 5.39: BIS Reference Tracking Comparison

Patient LPV L1-SF L1-OF
1 0.1119 0.0026 0.0019
2 0.2161 0.0021 0.0050
3 0.1095 0.0044 0.0015
5 0.1194 0.0032 0.0012
6 0.1086 0.0029 0.0021
7 0.1309 0.0033 0.0028

Table 5.40: Control Effort Comparison

Patient LPV L1-SF L1-OF
1 2.745 2.391 2.404
2 4.425 2.035 2.853
3 3.607 2.754 2.197
5 2.850 2.338 2.397
6 2.820 3.248 3.285
7 2.820 2.793 2.133
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Figure 5.35: LPV control simulation result of BIS reference tracking for Patient 1

generated for Patient 1 can be used as a controller for Patient 2 and 6, and the
LPV controller generated for Patient 3 can be used as a controller for Patients
5 and 7. The L1-adaptive state-feedback control scheme appears to yield more
robust controllers. As can be seen in Tables 5.1 and 5.2, the L1-adaptive scheme,
for example, allows for the controller designed for Patient 1 used on Patients 2,
5, 6 and 7 with no deterioration in results. Similarly, the L1-adaptive controller
designed for Patient 3 can be applied to Patients 1, 2, 5, 6, and 7 and results
in good tracking performance. The same follows for five of the six controllers
designed for our patient set. The L1-adaptive output-feedback control scheme
appears to be the have the greatest robustness to interpatient variability; the L1-
adaptive output-feedback control scheme yields controllers that can be applied to
the entire patient set, and with no deterioration to the tracking performance. That
is, you could take any L1-adaptive output-feedback controller designed for any of
the patients in our set, apply it any other patient in the set, and achieve the desired
BIS tracking performance.

It is important to note that there are two different sets of assumptions in the LPV
and L1-adaptive control schemes. The LPV controllers are designed to control
the patient during both the awake and sedated states. The L1-adaptive control
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Figure 5.36: LPV control simulation result of BIS reference tracking for Patient 3

scheme however assumes that the anesthesiologist first brings the patient into the
sedated region and then the controller is switched on. In the sedated region, which
is where the control is most required during the surgery, the L1-adaptive control
schemes provide better tracking performance, use less anesthesia, and appear to be
more robust to interpatient variability (particularly in the case of the L1-adaptive
output-feedback scheme).
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Figure 5.37: LPV control simulation result of BIS reference tracking for Patient 5

97



www.manaraa.com

CHAPTER 6

CONCLUSIONS AND ONGOING
RESEARCH

In this thesis, we present the first application of recently proposed L1-adaptive
control techniques to the anesthesia control problem. The acheived tracking per-
formance and inter-patient robustness of these control methods, in conjunction
with the relatively effective use of isoflurane, is extremely encouraging, and MIMO
design efforts incorporating surgical stimuli inputs and additional performance
objectives on patient vital signs are ongoing.

6.1 State vs. Output Feedback

One important aspect to consider when comparing the state-feedback L1-adaptive
scheme versus the output-feedback in our studies is the meaning of the values be-
ing fed back to the controller. In the state-space scheme, the models we identified
were black-box models. The states do not have any direct physical meaning at-
tached to them. So the question becomes how would one use this outside of theory
and actually apply it? The output feedback controller described in section 3.3 re-
quires only the BIS value be known. Since the BIS is a measureable, physical
signal, this is far more useful in terms of building and implementing the controller
in real-world applications.

Robustness to interpatient variability is also important to examine. When de-
signing a control system to administer anesthesia to surgery patients, a design that
is as robust as possible is desired, as the difference in response to anesthesia and
surgical stimuli can vary greatly from one person to the next. Based on the the
simulations conducted for this paper, the output feedback scheme appears betters
suited for this task than the state feedback scheme. The state-feedback scheme
requires the desired reference model to have certain structural characteristics in
common with those of the plant, thus it is more restrictive in applicability to all
of the patient models. The output feedback scheme, on the other hand, controls
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the system input based on the behavior of the system in that controllers are de-
signed based on transfer functions and not specific matrices like the state-feedback
scheme does.

Performance when disturbances to the system are present is also an important
factor to consider. For example, consider a common surgery scenario. The pa-
tient is subjected to a variety of stimuli that could cause the patient to wake up.
These include, but are not limited to, incisions, jostling of the patient, intubation,
noises that occur during surgery, and suturing. It is essential that while the patient
is undergoing surgery they remain sedated. This is not only physically safer for
the patient, but also prevents emotional or psychological trauma that could result
from waking up during such an event. Thus there is an important question that
must be answered: which control scheme best addresses this issue? Based on the
simulations performed and the tracking and control effort data gathered from these
simulations, the output feedback scheme performs better than the state feedback.
As previously mentioned, the output feedback relies strictly on the BIS signal to
determine the amount of anesthesia to administer. As such, when the patients BIS
starts to rise due to some disturbance, the controller will administer more anesthe-
sia to counter this effect. The state-feedback scheme however relies on the state
to determine the anesthesia level. The problem lies in the fact that the structure
of the models results in very little state change when the disturbances enter the
system. This is a problem because the state feedback relies on minimizing the
state error rather than the output error.

In terms of tracking performance (i.e. settling time, peak overshoot, steady-
state error, etc.), the state-feedback scheme appears to more easily obtain better
results than the output-feedback scheme. If the tables provided in Chapter 5 are
examined, the rN values illustrate this. It is, however, important to note the state-
feedback scheme’s robustness to interpatient variability and disturbances inherent
in a surgery make it considerably less suitable for our purposes than the output-
feedback. The output-feedback scheme itself achieves very good tracking, both
with and without disturbances.

Based on the previously discussed characteristics, the output-feedback scheme
appears to be the best suited of the two architectures for the anesthesia problem.
The L1-adaptive output feedback control scheme’s tracking performance, ability
to be applied to different patients with no adjustments when the reference system
M(s) and filter C(s) is conservatively tuned, ability to counteract disturbances to
the BIS profile, and reliance on a measureable physical signal for feedback make
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L1-adaptive output feedback scheme a more feasible and overall useful approach
to this control problem.

6.2 Observations

When investigating robustness of output feedback control designs to interpatient
variability, it appears that to guarantee applicability of a single controller to more
than just one patient, one must conservatively design C(s) and M(s). As usual,
there is a trade-off between making the controller robust and having high perfor-
mance (in our case, this generally results in a decrease in the ability of the con-
troller to cancel the effects of disturbances on the BIS value). Conversely, with a
more conservative controller, it appears more likely that vital signs like heart-rate
and mean arterial pressure will remain in the desired range of values. For con-
trollers with stronger tracking performance, the control action is more aggressive.
That is, the controller administers larger amounts of anesthesia over short periods
of time when responding to differences between r(t) and the patient’s BIS value.
As can be seen in many of the tables from the previous chapter, there are a number
of combinations of C(s) and M(s) that can be used in the controller for Patients 1,
2, 3, 5, 6, and 7. Patients 1 and 5, however, require a more conservative C(s) filter
than the others. In most patients’ control designs we can use a filter like (3.9) with
ω = 0.002 and generally any of the desired reference models of the form (2.7)
with the m values we have investigated in this thesis.

Based on the the preliminary study into higher order filters in Section 5.2.7,
it also appears that increasing the order of the filter, C(s), can lead to improved
closed-loop performance using the L1-adaptive output-feedback controller. Higher
order filters can improve the quality of the input signal by reducing oscillations
in the control channel. Higher order filters can also improve on the tracking per-
formance over first order filters. This improvement in control effort and tracking
performance does come at a price, however, as increasing the order of the filter in-
creases the complexity of the system and the difficulty of designing the controller,
particularly when evaluating the stability conditions. Increasing the order of the
C(s) filter from first to second order, however can improve performance with a
relatively small increase in complexity.
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6.3 Future Work

Higher order filters in the L1 design process should be explored further to de-
termine to what extent they improve performance. The emphasis of this study
was to determine whether or not the L1 approach to control design delivered ro-
bustness in terms of a single control design being applicable to many different
patients. While our results demonstrate how robust this control architecture can
be, it remains to be investigated what yields the best performance for the greatest
number of patients. Surgical data will be used to test this control approach under
harsher conditions, (i.e. greater number of anesthetic agents, disturbances, and
actual surgical stimuli events).
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APPENDIX A

SYSTEM IDENTIFICATION MATLAB
CODE

A.1 n4sid

Patient 1 BIS

Load patient 1 data

load patient1-2ipt-v3.mat

Create data

z = iddata

(used bis data’, [used iso data’ used EP data’ used EVAL data’used LMA data’],5);

z.inputn={ ’ISO’;’EP’;’EVAL’;’LMA’ };

z.outputn={ ’BIS’ };

Partition data

zawake=[z(1:732,:); z(1674:2563,:)];

zsleep=z(733:1674,:);

zawakev=zawake(1:732);

zawakee=zawake(733:1622);

zsleepe=zsleep(1:471);

zsleepv=zsleep(472:942);

Detrend

zawakee=detrend(zawakee);

zawakev=detrend(zawakev);

zsleepe=detrend(zsleepe);

zsleepv=detrend(zsleepv);

Find Order of Sleep

msleep=n4sid(zsleepe,1:15);

Find Order of Awake

mawake=n4sid(zawakee,1:15);
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Impulse Response of Sleep Model

impulse(msleep,’sd’,3,’fill’);
Impulse Response of Awake Model

impulse(mawake,’sd’,3,’fill’);
Find Awake Model using n4sid 4 states

mawake4=n4sid(zawakee,4,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[mawake4B,Da4] = BALREAL(mawake4);
Find Sleep Model using n4sid 4 states

msleep4=n4sid(zsleepe,4,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[msleep4B,Ds4] = BALREAL(msleep4);
Find Awake Model using n4sid 5 states

mawake5=n4sid(zawakee,5,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[mawake5B,Da5] = BALREAL(mawake5);
Find Sleep Model using n4sid 5 states

msleep5=n4sid(zsleepe,5,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[msleep5B,Ds5] = BALREAL(msleep5);
Find Awake Model using n4sid 6 states

mawake6=n4sid(zawakee,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[mawake6B,Da6] = BALREAL(mawake6);
Find Sleep Model using n4sid 6 states

msleep6=n4sid(zsleepe,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[msleep6B,Ds6] = BALREAL(msleep6);
Find Awake Model using n4sid 7 states

mawake7=n4sid(zawakee,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[mawake7B,Da7] = BALREAL(mawake7);
Find Sleep Model using n4sid 7 states

msleep7=n4sid(zsleepe,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[msleep7B,Ds7] = BALREAL(msleep7);
Compare models with zsleepv and zawakev

Compare mawake4 with zawakev

compare(zawakev,mawake4);
Compare mawake5 with zawakev

compare(zawakev,mawake5);
Compare mawake6 with zawakev

compare(zawakev,mawake6);
Compare mawake7 with zawakev
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compare(zawakev,mawake7);

Compare msleep4 with zsleepv

compare(zsleepv,msleep4);

Compare msleep5 with zsleepv

compare(zsleepv,msleep5);

Compare msleep6 with zsleepv

compare(zsleepv,msleep6);

Compare msleep7 with zsleepv

compare(zsleepv,msleep7);

Patient 1 BP

Load patient 1 data

load patient1-2ipt-v3.mat

Create data

z=iddata

(used bp data’,[used iso data’ used EP data’ used EVAL data’ used LMA data’],5);

z.inputn={’ISO’;’EP’;’EVAL’;’LMA’};

z.outputn={’BP’};

Partition data

zawake=[z(1:732,:); z(1674:2563,:)];

zsleep=z(733:1674,:);

zawakev=zawake(1:732);

zawakee=zawake(733:1622);

zsleepe=zsleep(1:471);

zsleepv=zsleep(472:942);

Detrend

zawakee=detrend(zawakee);

zawakev=detrend(zawakev);

zsleepe=detrend(zsleepe);

zsleepv=detrend(zsleepv);

Find Order of Sleep

msleep=n4sid(zsleepe,1:15);

Find Order of Awake

mawake=n4sid(zawakee,1:15);
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Impulse Response of Sleep Model

impulse(msleep,’sd’,3,’fill’);
Impulse Response of Awake Model

impulse(mawake,’sd’,3,’fill’);
Find Awake Model using n4sid 1 states

mawake4=n4sid(zawakee,1,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[mawake4B,Da4] = BALREAL(mawake4);
Find Sleep Model using n4sid 1 states

msleep4=n4sid(zsleepe,1,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[msleep4B,Ds4] = BALREAL(msleep4);
Find Awake Model using n4sid 2 states

mawake5=n4sid(zawakee,2,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[mawake5B,Da5] = BALREAL(mawake5);
Find Sleep Model using n4sid 2 states

msleep5=n4sid(zsleepe,2,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[msleep5B,Ds5] = BALREAL(msleep5);
Find Awake Model using n4sid 6 states

mawake6=n4sid(zawakee,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[mawake6B,Da6] = BALREAL(mawake6);
Find Sleep Model using n4sid 6 states

msleep6=n4sid(zsleepe,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[msleep6B,Ds6] = BALREAL(msleep6);
Find Awake Model using n4sid 7 states

mawake7=n4sid(zawakee,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[mawake7B,Da7] = BALREAL(mawake7);
Find Sleep Model using n4sid 7 states

msleep7=n4sid(zsleepe,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[msleep7B,Ds7] = BALREAL(msleep7);
Compare models with zsleepv and zawakev

Compare mawake4 with zawakev

compare(zawakev,mawake4);
Compare mawake5 with zawakev

compare(zawakev,mawake5);
Compare mawake6 with zawakev

compare(zawakev,mawake6);
Compare mawake7 with zawakev
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compare(zawakev,mawake7);

Compare msleep4 with zsleepv

compare(zsleepv,msleep4);

Compare msleep5 with zsleepv

compare(zsleepv,msleep5);

Compare msleep6 with zsleepv

compare(zsleepv,msleep6);

Compare msleep7 with zsleepv

compare(zsleepv,msleep7);

Patient 1 HR

Load patient 1 data

load patient1-2ipt-v3.mat

Create data

z=iddata

(used hr data’,[used iso data’ used EP data’ used EVAL data’ used LMA data’],5);

z.inputn={’ISO’;’EP’;’EVAL’;’LMA’};

z.outputn={’HR’};

Partition data

zawake=[z(1:732,:); z(1674:2563,:)];

zsleep=z(733:1674,:);

zawakev=zawake(1:732);

zawakee=zawake(733:1622);

zsleepe=zsleep(1:471);

zsleepv=zsleep(472:942);

Detrend

zawakee=detrend(zawakee);

zawakev=detrend(zawakev);

zsleepe=detrend(zsleepe);

zsleepv=detrend(zsleepv);

Find Order of Sleep

msleep=n4sid(zsleepe,1:15);

Find Order of Awake

mawake=n4sid(zawakee,1:15);
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Impulse Response of Sleep Model

impulse(msleep,’sd’,3,’fill’);
Impulse Response of Awake Model

impulse(mawake,’sd’,3,’fill’);
Find Awake Model using n4sid 4 states

mawake4=n4sid(zawakee,4,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[mawake4B,Da4] = BALREAL(mawake4);
Find Sleep Model using n4sid 4 states

msleep4=n4sid(zsleepe,4,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[msleep4B,Ds4] = BALREAL(msleep4);
Find Awake Model using n4sid 5 states

mawake5=n4sid(zawakee,5,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[mawake5B,Da5] = BALREAL(mawake5);
Find Sleep Model using n4sid 5 states

msleep5=n4sid(zsleepe,5,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[msleep5B,Ds5] = BALREAL(msleep5);
Find Awake Model using n4sid 6 states

mawake6=n4sid(zawakee,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[mawake6B,Da6] = BALREAL(mawake6);
Find Sleep Model using n4sid 6 states

msleep6=n4sid(zsleepe,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[msleep6B,Ds6] = BALREAL(msleep6);
Find Awake Model using n4sid 7 states

mawake7=n4sid(zawakee,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[mawake7B,Da7] = BALREAL(mawake7);
Find Sleep Model using n4sid 7 states

msleep7=n4sid(zsleepe,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[msleep7B,Ds7] = BALREAL(msleep7);
Compare models with zsleepv and zawakev

Compare mawake4 with zawakev

compare(zawakev,mawake4);
Compare mawake5 with zawakev

compare(zawakev,mawake5);
Compare mawake6 with zawakev

compare(zawakev,mawake6);
Compare mawake7 with zawakev
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compare(zawakev,mawake7);

Compare msleep4 with zsleepv

compare(zsleepv,msleep4);

Compare msleep5 with zsleepv

compare(zsleepv,msleep5);

Compare msleep6 with zsleepv

compare(zsleepv,msleep6);

Compare msleep7 with zsleepv

compare(zsleepv,msleep7);

Patient 2 BIS

Load patient 2 data

load patient2-2ipt-v3.mat

Create data

z=iddata

(used bis data’,[used iso data’ used EP data’ used EVAL data’ used LMA data’],5);

z.inputn=’ISO’;’EP’;’EVAL’;’LMA’;

z.outputn=’BIS’;

Partition data

zawake=[z(1:903,:); z(2141:2874,:)];

zsleep=z(904:2140,:);

zawakee=zawake(1:903);

zawakev=zawake(904:1637);

zsleepe=zsleep(1:618);

zsleepv=zsleep(619:1236);

Detrend

zawakee=detrend(zawakee);

zawakev=detrend(zawakev);

zsleepe=detrend(zsleepe);

zsleepv=detrend(zsleepv);

Find Order of Sleep

msleep=n4sid(zsleepe,1:15);

Find Order of Awake

mawake=n4sid(zawakee,1:15);
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Impulse Response of Sleep Model

impulse(msleep,’sd’,3,’fill’);
Impulse Response of Awake Model

impulse(mawake,’sd’,3,’fill’);
Find Awake Model using n4sid 4 states

mawake4=n4sid(zawakee,4,’nk’,[1 1 0 0], ’Focus’, ’Simulation’);
[mawake4B,Da4] = BALREAL(mawake4);
Find Sleep Model using n4sid 4 states

msleep4=n4sid(zsleepe,4,’nk’,[1 0 0 0], ’Focus’, ’Stability’);
[msleep4B,Ds4] = BALREAL(msleep4);
Find Awake Model using n4sid 5 states

mawake5=n4sid(zawakee,5,’nk’,[1 1 0 0], ’Focus’, ’Simulation’);
[mawake5B,Da5] = BALREAL(mawake5);
Find Sleep Model using n4sid 5 states

msleep5=n4sid(zsleepe,5,’nk’,[1 0 0 0], ’Focus’, ’Stability’);
[msleep5B,Ds5] = BALREAL(msleep5);
Find Awake Model using n4sid 6 states

mawake6=n4sid(zawakee,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[mawake6B,Da6] = BALREAL(mawake6);
Find Sleep Model using n4sid 6 states

msleep6=n4sid(zsleepe,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[msleep6B,Ds6] = BALREAL(msleep6);
Find Awake Model using n4sid 7 states

mawake7=n4sid(zawakee,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[mawake7B,Da7] = BALREAL(mawake7);
Find Sleep Model using n4sid 7 states

msleep7=n4sid(zsleepe,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[msleep7B,Ds7] = BALREAL(msleep7);
Compare models with zsleepv and zawakev

Compare mawake4 with zawakev

compare(zawakev,mawake4);
Compare mawake5 with zawakev

compare(zawakev,mawake5);
Compare mawake6 with zawakev

compare(zawakev,mawake6);
Compare mawake7 with zawakev
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compare(zawakev,mawake7);

Compare msleep4 with zsleepv

compare(zsleepv,msleep4);

Compare msleep5 with zsleepv

compare(zsleepv,msleep5);

Compare msleep6 with zsleepv

compare(zsleepv,msleep6);

Compare msleep7 with zsleepv

compare(zsleepv,msleep7);

Patient 2 BP

Load patient 2 data

load patient2-2ipt-v3.mat

Create data

z=iddata

(used bp data’,[used iso data’ used EP data’ used EVAL data’ used LMA data’],5);

z.inputn=’ISO’;’EP’;’EVAL’;’LMA’;

z.outputn=’BP’;

Partition data

zawake=[z(1:903,:); z(2141:2874,:)];

zsleep=z(904:2140,:);

zawakee=zawake(1:903);

zawakev=zawake(904:1637);

zsleepe=zsleep(1:618);

zsleepv=zsleep(619:1236);

Detrend

zawakee=detrend(zawakee);

zawakev=detrend(zawakev);

zsleepe=detrend(zsleepe);

zsleepv=detrend(zsleepv);

Find Order of Sleep

msleep=n4sid(zsleepe,1:15);

Find Order of Awake

mawake=n4sid(zawakee,1:15);
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Impulse Response of Sleep Model

impulse(msleep,’sd’,3,’fill’);
Impulse Response of Awake Model

impulse(mawake,’sd’,3,’fill’);
Find Awake Model using n4sid 1 states
mawake4=n4sid(zawakee,1,’nk’,[1 1 0 0], ’Focus’, ’Simulation’);
[mawake4B,Da4] = BALREAL(mawake4);
Find Sleep Model using n4sid 1 states
msleep4=n4sid(zsleepe,1,’nk’,[1 0 0 0], ’Focus’, ’Stability’);
[msleep4B,Ds4] = BALREAL(msleep4);
Find Awake Model using n4sid 2 states
mawake5=n4sid(zawakee,2,’nk’,[1 1 0 0], ’Focus’, ’Simulation’);
[mawake5B,Da5] = BALREAL(mawake5);
Find Sleep Model using n4sid 2 states
msleep5=n4sid(zsleepe,2,’nk’,[1 0 0 0], ’Focus’, ’Stability’);
[msleep5B,Ds5] = BALREAL(msleep5);
Find Awake Model using n4sid 6 states

mawake6=n4sid(zawakee,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[mawake6B,Da6] = BALREAL(mawake6);
Find Sleep Model using n4sid 6 states

msleep6=n4sid(zsleepe,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[msleep6B,Ds6] = BALREAL(msleep6);
Find Awake Model using n4sid 7 states

mawake7=n4sid(zawakee,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[mawake7B,Da7] = BALREAL(mawake7);
Find Sleep Model using n4sid 7 states

msleep7=n4sid(zsleepe,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[msleep7B,Ds7] = BALREAL(msleep7);
Compare models with zsleepv and zawakev

Compare mawake4 with zawakev

compare(zawakev,mawake4);
Compare mawake5 with zawakev

compare(zawakev,mawake5);
Compare mawake6 with zawakev

compare(zawakev,mawake6);
Compare mawake7 with zawakev
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compare(zawakev,mawake7);

Compare msleep4 with zsleepv

compare(zsleepv,msleep4);

Compare msleep5 with zsleepv

compare(zsleepv,msleep5);

Compare msleep6 with zsleepv

compare(zsleepv,msleep6);

Compare msleep7 with zsleepv

compare(zsleepv,msleep7);

A.1.1 Patient 3 BIS

Load patient 3 data

load patient3-2ipt-v3.mat

Create data

z=iddata

(used bis data’,[used iso data’ used EP data’ used EVAL data’ used LMA data’],5);

z.inputn=’ISO’;’EP’;’EVAL’;’LMA’;

z.outputn=’BIS’;

Partition data

zawake=[z(1:913,:); z(2279:2678,:)];

zsleep=z(914:2278,:);

zawakee=zawake(1:913);

zawakev=zawake(914:2751);

zsleepe=zsleep(1:682);

zsleepv=zsleep(683:1364);

Detrend

zawakee=detrend(zawakee);

zawakev=detrend(zawakev);

zsleepe=detrend(zsleepe);

zsleepv=detrend(zsleepv);

Find Order of Sleep

msleep=n4sid(zsleepe,1:15);

Find Order of Awake

mawake=n4sid(zawakee,1:15);
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Impulse Response of Sleep Model

impulse(msleep,’sd’,3,’fill’);
Impulse Response of Awake Model

impulse(mawake,’sd’,3,’fill’);
Find Awake Model using n4sid 4 states

mawake4=n4sid(zawakee,4,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[mawake4B,Da4] = BALREAL(mawake4);
Find Sleep Model using n4sid 4 states

msleep4=n4sid(zsleepe,4,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[msleep4B,Ds4] = BALREAL(msleep4);
Find Awake Model using n4sid 5 states

mawake5=n4sid(zawakee,5,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[mawake5B,Da5] = BALREAL(mawake5);
Find Sleep Model using n4sid 5 states

msleep5=n4sid(zsleepe,5,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[msleep5B,Ds5] = BALREAL(msleep5);
Find Awake Model using n4sid 6 states

mawake6=n4sid(zawakee,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[mawake6B,Da6] = BALREAL(mawake6);
Find Sleep Model using n4sid 6 states

msleep6=n4sid(zsleepe,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[msleep6B,Ds6] = BALREAL(msleep6);
Find Awake Model using n4sid 7 states

mawake7=n4sid(zawakee,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[mawake7B,Da7] = BALREAL(mawake7);
Find Sleep Model using n4sid 7 states

msleep7=n4sid(zsleepe,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[msleep7B,Ds7] = BALREAL(msleep7);
Compare models with zsleepv and zawakev

Compare mawake4 with zawakev

compare(zawakev,mawake4);
Compare mawake5 with zawakev

compare(zawakev,mawake5);
Compare mawake6 with zawakev

compare(zawakev,mawake6);
Compare mawake7 with zawakev

113



www.manaraa.com

compare(zawakev,mawake7);

Compare msleep4 with zsleepv

compare(zsleepv,msleep4);

Compare msleep5 with zsleepv

compare(zsleepv,msleep5);

Compare msleep6 with zsleepv

compare(zsleepv,msleep6);

Compare msleep7 with zsleepv

compare(zsleepv,msleep7);

Patient 3 BP

Load patient 3 data

load patient3-2ipt-v3.mat

Create data

z=iddata

(used bp data’,[used iso data’ used EP data’ used EVAL data’ used LMA data’],5);

z.inputn=’ISO’;’EP’;’EVAL’;’LMA’;

z.outputn=’BP’;

Partition data

zawake=[z(1:78,:); z(82:430,:); z(433:913,:); z(1947:1963,:);

z(2279:2725,:); z(2729:2751,:)];

zsleep=[z(79:82,:);z(431:432,:); z(914:1946,:); z(1964:2278,:);

z(2726:2728,:)];

zawakee=zawake(1:913);

zawakev=zawake(914:2751);

zsleepe=zsleep(1:674);

zsleepv=zsleep(675:1349);

Detrend

zawakee=detrend(zawakee);

zawakev=detrend(zawakev);

zsleepe=detrend(zsleepe);

zsleepv=detrend(zsleepv);

Find Order of Sleep

msleep=n4sid(zsleepe,1:15);
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Find Order of Awake

mawake=n4sid(zawakee,1:15);
Impulse Response of Sleep Model

impulse(msleep,’sd’,3,’fill’);
Impulse Response of Awake Model

impulse(mawake,’sd’,3,’fill’);
Find Awake Model using n4sid 4 states

mawake4=n4sid(zawakee,1,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[mawake4B,Da4] = BALREAL(mawake4);
Find Sleep Model using n4sid 4 states

msleep4=n4sid(zsleepv,1,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[msleep4B,Ds4] = BALREAL(msleep4);
Find Awake Model using n4sid 5 states

mawake5=n4sid(zawakee,2,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[mawake5B,Da5] = BALREAL(mawake5);
Find Sleep Model using n4sid 5 states

msleep5=n4sid(zsleepv,2,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[msleep5B,Ds5] = BALREAL(msleep5);
Find Awake Model using n4sid 6 states

mawake6=n4sid(zawakee,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[mawake6B,Da6] = BALREAL(mawake6);
Find Sleep Model using n4sid 6 states

msleep6=n4sid(zsleepe,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[msleep6B,Ds6] = BALREAL(msleep6);
Find Awake Model using n4sid 7 states

mawake7=n4sid(zawakee,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[mawake7B,Da7] = BALREAL(mawake7);
Find Sleep Model using n4sid 7 states

msleep7=n4sid(zsleepe,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[msleep7B,Ds7] = BALREAL(msleep7);
Compare models with zsleepv and zawakev

Compare mawake4 with zawakev

compare(zawakev,mawake4);
Compare mawake5 with zawakev

compare(zawakev,mawake5);
Compare mawake6 with zawakev

115



www.manaraa.com

compare(zawakev,mawake6);

Compare mawake7 with zawakev

compare(zawakev,mawake7);

Compare msleep4 with zsleepv

compare(zsleepv,msleep4);

Compare msleep5 with zsleepv

compare(zsleepv,msleep5);

Compare msleep6 with zsleepv

compare(zsleepv,msleep6);

Compare msleep7 with zsleepv

compare(zsleepv,msleep7);

Patient 5 BIS

Load patient 5 data

load patient5-2ipt-v3.mat

Create data

z=iddata

(used bis data’,[used iso data’ used EP data’ used EVAL data’ used LMA data’],5);

z.inputn=’ISO’;’EP’;’EVAL’;’LMA’;

z.outputn=’BIS’;

Partition data

zawake=[z(1:660,:); z(1380:1458,:); z(1644:2195,:)];

zsleep=[z(661:1379,:); z(1459:1643,:)];

zawakee=zawake(1:660);

zawakev=zawake(661:1291);

zsleepe=zsleep(1:452);

zsleepv=zsleep(453:904);

Detrend

zawakee=detrend(zawakee);

zawakev=detrend(zawakev);

zsleepe=detrend(zsleepe);

zsleepv=detrend(zsleepv);

Find Order of Sleep

msleep=n4sid(zsleepe,1:15);
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Find Order of Awake

mawake=n4sid(zawakee,1:15);
Impulse Response of Sleep Model

impulse(msleep,’sd’,3,’fill’);
Impulse Response of Awake Model

impulse(mawake,’sd’,3,’fill’);
Find Awake Model using n4sid 4 states

mawake4=n4sid(zawakee,4,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[mawake4B,Da4] = BALREAL(mawake4);
Find Sleep Model using n4sid 4 states

msleep4=n4sid(zsleepe,4,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[msleep4B,Ds4] = BALREAL(msleep4);
Find Awake Model using n4sid 5 states

mawake5=n4sid(zawakee,5,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[mawake5B,Da5] = BALREAL(mawake5);
Find Sleep Model using n4sid 5 states

msleep5=n4sid(zsleepe,5,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[msleep5B,Ds5] = BALREAL(msleep5);
Find Awake Model using n4sid 6 states

mawake6=n4sid(zawakee,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[mawake6B,Da6] = BALREAL(mawake6);
Find Sleep Model using n4sid 6 states

msleep6=n4sid(zsleepe,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[msleep6B,Ds6] = BALREAL(msleep6);
Find Awake Model using n4sid 7 states

mawake7=n4sid(zawakee,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[mawake7B,Da7] = BALREAL(mawake7);
Find Sleep Model using n4sid 7 states

msleep7=n4sid(zsleepe,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[msleep7B,Ds7] = BALREAL(msleep7);
Compare models with zsleepv and zawakev

Compare mawake4 with zawakev

compare(zawakev,mawake4);
Compare mawake5 with zawakev

compare(zawakev,mawake5);
Compare mawake6 with zawakev
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compare(zawakev,mawake6);

Compare mawake7 with zawakev

compare(zawakev,mawake7);

Compare msleep4 with zsleepv

compare(zsleepv,msleep4);

Compare msleep5 with zsleepv

compare(zsleepv,msleep5);

Compare msleep6 with zsleepv

compare(zsleepv,msleep6);

Compare msleep7 with zsleepv

compare(zsleepv,msleep7);

Patient 5 BP

Load patient 5 data

load patient5-2ipt-v3.mat

Create data

z=iddata

(used bp data’,[used iso data’ used EP data’ used EVAL data’ used LMA data’],5);

z.inputn=’ISO’;’EP’;’EVAL’;’LMA’;

z.outputn=’BP’;

Partition data

zawake=[z(1:660,:); z(1380:1458,:); z(1644:2195,:)];

zsleep=[z(661:1379,:); z(1459:1643,:)];

zawakee=zawake(1:660);

zawakev=zawake(661:1291);

zsleepe=zsleep(1:452);

zsleepv=zsleep(453:904);

Detrend

zawakee=detrend(zawakee);

zawakev=detrend(zawakev);

zsleepe=detrend(zsleepe);

zsleepv=detrend(zsleepv);

Find Order of Sleep

msleep=n4sid(zsleepe,1:15);
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Find Order of Awake

mawake=n4sid(zawakee,1:15);
Impulse Response of Sleep Model

impulse(msleep,’sd’,3,’fill’);
Impulse Response of Awake Model

impulse(mawake,’sd’,3,’fill’);
Find Awake Model using n4sid 4 states

mawake4=n4sid(zawakee,1,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[mawake4B,Da4] = BALREAL(mawake4);
Find Sleep Model using n4sid 4 states

msleep4=n4sid(zsleepe,1,’nk’,[1 0 0 0], ’Focus’,’Stability’);
[msleep4B,Ds4] = BALREAL(msleep4);
Find Awake Model using n4sid 5 states

mawake5=n4sid(zawakee,2,’nk’,[1 0 0 0], ’Focus’,’Simulation’);
[mawake5B,Da5] = BALREAL(mawake5);
Find Sleep Model using n4sid 5 states

msleep5=n4sid(zsleepe,2,’nk’,[1 0 0 0], ’Focus’,’Stability’);
[msleep5B,Ds5] = BALREAL(msleep5);
Find Awake Model using n4sid 6 states

mawake6=n4sid(zawakee,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[mawake6B,Da6] = BALREAL(mawake6);
Find Sleep Model using n4sid 6 states

msleep6=n4sid(zsleepe,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[msleep6B,Ds6] = BALREAL(msleep6);
Find Awake Model using n4sid 7 states

mawake7=n4sid(zawakee,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[mawake7B,Da7] = BALREAL(mawake7);
Find Sleep Model using n4sid 7 states

msleep7=n4sid(zsleepe,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[msleep7B,Ds7] = BALREAL(msleep7);
Compare models with zsleepv and zawakev

Compare mawake4 with zawakev

compare(zawakev,mawake4);
Compare mawake5 with zawakev

compare(zawakev,mawake5);
Compare mawake6 with zawakev
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compare(zawakev,mawake6);

Compare mawake7 with zawakev

compare(zawakev,mawake7);

Compare msleep4 with zsleepv

compare(zsleepv,msleep4);

Compare msleep5 with zsleepv

compare(zsleepv,msleep5);

Compare msleep6 with zsleepv

compare(zsleepv,msleep6);

Compare msleep7 with zsleepv

compare(zsleepv,msleep7);

Patient 6 BIS

Load patient 6 data

load patient6-2ipt-v3.mat

Create data

z=iddata

(used bis data’,[used iso data’ used EP data’ used EVAL data’ used LMA data’],5);

z.inputn=’ISO’;’EP’;’EVAL’;’LMA’;

z.outputn=’BIS’;

Partition data

zawake=[z(1:68,:); z(88:130,:); z(139:236,:); z(240:257,:); z(265:286,:); z(293:303,:);
z(306:354,:); z(371:380,:); z(394:764,:); z(773:780,:); z(874:939,:); z(944:1000,:);
z(1007:1022,:); z(1028:1085,:); z(1153:1159,:); z(1191:1195,:); z(1205:1211,:);
z(1251:1251,:); z(1579:1581,:); z(1598:1601,:); z(1616:1624,:); z(1634:1635,:);
z(1686:1755,:); z(2062:2079,:); z(2092:2768,:); z(2778:2826,:)]; zsleep=[z(69:87,:);
z(131:138,:); z(237:239,:);z(258:264,:); z(287:292,:); z(304:305,:); z(355:370,:);
z(381:393,:); z(765:772,:); z(781:873,:); z(940:943,:); z(1001:1006,:); z(1023:1027,:);
z(1086:1152,:); z(1160:1190,:); z(1196:1204,:); z(1212:1250,:); z(1252:1578,:);
z(1582:1597,:); z(1602:1615,:); z(1625:1633,:); z(1636:1685,:); z(1756:2061,:);
z(2080:2091,:); z(2769:2777,:)];

zawakee=zawake(1:873);

zawakev=zawake(874:1747);

zsleepe=zsleep(1:539);
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zsleepv=zsleep(540:1079);
Detrend

zawakee=detrend(zawakee);
zawakev=detrend(zawakev);
zsleepe=detrend(zsleepe);
zsleepv=detrend(zsleepv);
Find Order of Sleep

msleep=n4sid(zsleepe,1:15);
Find Order of Awake

mawake=n4sid(zawakee,1:15);
Impulse Response of Sleep Model

impulse(msleep,’sd’,3,’fill’);
Impulse Response of Awake Model

impulse(mawake,’sd’,3,’fill’);
Find Awake Model using n4sid 4 states

mawake4=n4sid(zawakee,4,’nk’,[2 0 0 0], ’Focus’, ’Stability’ )
[mawake4B,Da4] = BALREAL(mawake4);
Find Sleep Model using n4sid 4 states

msleep4=n4sid(zsleepe,4,’nk’,[2 0 0 0], ’Focus’, ’Stability’ )
[msleep4B,Ds4] = BALREAL(msleep4);
Find Awake Model using n4sid 5 states

mawake5=n4sid(zawakee,5,’nk’,[2 0 0 0], ’Focus’, ’Stability’ )
[mawake5B,Da5] = BALREAL(mawake5);
Find Sleep Model using n4sid 5 states

msleep5=n4sid(zsleepe,5,’nk’,[2 0 0 0], ’Focus’, ’Stability’ )
[msleep5B,Ds5] = BALREAL(msleep5);
Find Awake Model using n4sid 6 states

mawake6=n4sid(zawakee,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[mawake6B,Da6] = BALREAL(mawake6);
Find Sleep Model using n4sid 6 states

msleep6=n4sid(zsleepe,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[msleep6B,Ds6] = BALREAL(msleep6);
Find Awake Model using n4sid 7 states

mawake7=n4sid(zawakee,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
[mawake7B,Da7] = BALREAL(mawake7);
Find Sleep Model using n4sid 7 states
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msleep7=n4sid(zsleepe,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);

[msleep7B,Ds7] = BALREAL(msleep7);

Compare models with zsleepv and zawakev

Compare mawake4 with zawakev

compare(zawakev,mawake4);

Compare mawake5 with zawakev

compare(zawakev,mawake5);

Compare mawake6 with zawakev

compare(zawakev,mawake6);

Compare mawake7 with zawakev

compare(zawakev,mawake7);

Compare msleep4 with zsleepv

compare(zsleepv,msleep4);

Compare msleep5 with zsleepv

compare(zsleepv,msleep5);

Compare msleep6 with zsleepv

compare(zsleepv,msleep6);

Compare msleep7 with zsleepv

compare(zsleepv,msleep7);

Patient 6 BP

Load patient 6 data

load patient6-2ipt-v3.mat

Create data

z=iddata

(used bp data’,[used iso data’ used EP data’ used EVAL data’ used LMA data’],5);

z.inputn=’ISO’;’EP’;’EVAL’;’LMA’;

z.outputn=’BP’;

Partition data

zawake=[z(1:68,:); z(88:130,:); z(139:236,:); z(240:257,:); z(265:286,:); z(293:303,:);
z(306:354,:); z(371:380,:); z(394:764,:); z(773:780,:); z(874:939,:); z(944:1000,:);
z(1007:1022,:); z(1028:1085,:); z(1153:1159,:); z(1191:1195,:); z(1205:1211,:);
z(1251:1251,:); z(1579:1581,:); z(1598:1601,:); z(1616:1624,:); z(1634:1635,:);
z(1686:1755,:); z(2062:2079,:); z(2092:2768,:); z(2778:2826,:)]; zsleep=[z(69:87,:);
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z(131:138,:); z(237:239,:);z(258:264,:); z(287:292,:); z(304:305,:); z(355:370,:);
z(381:393,:); z(765:772,:); z(781:873,:); z(940:943,:); z(1001:1006,:); z(1023:1027,:);
z(1086:1152,:); z(1160:1190,:); z(1196:1204,:); z(1212:1250,:); z(1252:1578,:);
z(1582:1597,:); z(1602:1615,:); z(1625:1633,:); z(1636:1685,:); z(1756:2061,:);
z(2080:2091,:); z(2769:2777,:)];

zawakee=zawake(1:873);
zawakev=zawake(874:1747);
zsleepe=zsleep(1:539);
zsleepv=zsleep(540:1079);
Detrend

zawakee=detrend(zawakee);
zawakev=detrend(zawakev);
zsleepe=detrend(zsleepe);
zsleepv=detrend(zsleepv);
Find Order of Sleep

msleep=n4sid(zsleepe,1:15);
Find Order of Awake

mawake=n4sid(zawakee,1:15);
Impulse Response of Sleep Model

impulse(msleep,’sd’,3,’fill’);
Impulse Response of Awake Model

impulse(mawake,’sd’,3,’fill’);
Find Awake Model using n4sid 4 states

mawake4=n4sid(zawakee,1,’nk’,[2 0 0 0], ’Focus’, ’Stability’ )
[mawake4B,Da4] = BALREAL(mawake4);
Find Sleep Model using n4sid 4 states

msleep4=n4sid(zsleepe,1,’nk’,[2 0 0 0], ’Focus’, ’Stability’ )
[msleep4B,Ds4] = BALREAL(msleep4);
Find Awake Model using n4sid 5 states

mawake5=n4sid(zawakee,2,’nk’,[2 0 0 0], ’Focus’, ’Stability’ )
[mawake5B,Da5] = BALREAL(mawake5);
Find Sleep Model using n4sid 5 states

msleep5=n4sid(zsleepe,2,’nk’,[2 0 0 0], ’Focus’, ’Stability’ )
[msleep5B,Ds5] = BALREAL(msleep5);
Find Awake Model using n4sid 6 states

mawake6=n4sid(zawakee,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);
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[mawake6B,Da6] = BALREAL(mawake6);

Find Sleep Model using n4sid 6 states

msleep6=n4sid(zsleepe,6,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);

[msleep6B,Ds6] = BALREAL(msleep6);

Find Awake Model using n4sid 7 states

mawake7=n4sid(zawakee,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);

[mawake7B,Da7] = BALREAL(mawake7);

Find Sleep Model using n4sid 7 states

msleep7=n4sid(zsleepe,7,’nk’,[1 1 0 0], ’DisturbanceModel’,’None’);

[msleep7B,Ds7] = BALREAL(msleep7);

Compare models with zsleepv and zawakev

Compare mawake4 with zawakev

compare(zawakev,mawake4);

Compare mawake5 with zawakev

compare(zawakev,mawake5);

Compare mawake6 with zawakev

compare(zawakev,mawake6);

Compare mawake7 with zawakev

compare(zawakev,mawake7);

Compare msleep4 with zsleepv

compare(zsleepv,msleep4);

Compare msleep5 with zsleepv

compare(zsleepv,msleep5);

Compare msleep6 with zsleepv

compare(zsleepv,msleep6);

Compare msleep7 with zsleepv

compare(zsleepv,msleep7);

Patient 7 BIS

Load patient 7 data

load patient7-2ipt-v3.mat

Create data

z=iddata

(used bis data’,[used iso data’ used EP data’ used EVAL data’ used LMA data’],5);
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z.inputn=’ISO’;’EP’;’EVAL’;’LMA’;
z.outputn=’BIS’;
Partition data

zawake=[z(319:346,:); z(367:414,:);z(434:460,:);z(495:507,:);
z(513:1140,:);z(1152:1166,:);z(2338:2367,:) ;z(2637:2990,:)];

zsleep=[z(1167:2337,:);z(2368:2636,:)];
zawakev=zawake(1:571);
zawakee=zawake(572:1143);
zsleepe=zsleep(1:720);
zsleepv=zsleep(721:1440);
Detrend

zawakee=detrend(zawakee);
zawakev=detrend(zawakev);
zsleepe=detrend(zsleepe);
zsleepv=detrend(zsleepv);
Find Order of Sleep

msleep=n4sid(zsleepe,1:15);
Find Order of Awake

mawake=n4sid(zawakee,1:15);
Impulse Response of Sleep Model

impulse(msleep,’sd’,3,’fill’);
Impulse Response of Awake Model

impulse(mawake,’sd’,3,’fill’);
Find Awake Model using n4sid 4 states

mawake4=n4sid(zawakee,4,’nk’,[1 1 0 0],’Focus’,’Simulation’)
[mawake4B,Da4] = BALREAL(mawake4);
Find Sleep Model using n4sid 4 states

msleep4=n4sid(zsleepe,4,’nk’,[1 1 0 0],’Focus’,’Simulation’)
[msleep4B,Ds4] = BALREAL(msleep4);
Find Awake Model using n4sid 5 states

mawake5=n4sid(zawakee,5,’nk’,[1 1 0 0],’Focus’,’Simulation’)
[mawake5B,Da5] = BALREAL(mawake5);
Find Sleep Model using n4sid 5 states

msleep5=n4sid(zsleepe,5,’nk’,[1 1 0 0],’Focus’,’Simulation’)
[msleep5B,Ds5] = BALREAL(msleep5); Find Awake Model using n4sid 6 states

mawake6=n4sid(zawakee,6,’nk’,[0 0 0 0],’Focus’,’Stability’)
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[mawake6B,Da6] = BALREAL(mawake6);

Find Sleep Model using n4sid 6 states

msleep6=n4sid(zsleepe,6,’nk’,[0 0 0 0],’Focus’,’Stability’)

[msleep6B,Ds6] = BALREAL(msleep6);

Find Awake Model using n4sid 7 states

mawake7=n4sid(zawakee,7,’nk’,[0 0 0 0],’Focus’,’Stability’)

[mawake7B,Da7] = BALREAL(mawake7);

Find Sleep Model using n4sid 7 states

msleep7=n4sid(zsleepe,7,’nk’,[0 0 0 0],’Focus’,’Stability’)

[msleep7B,Ds7] = BALREAL(msleep7);

Compare models with zsleepv and zawakev

Compare mawake4 with zawakev

compare(zawakev,mawake4);

Compare mawake5 with zawakev

compare(zawakev,mawake5);

Compare mawake6 with zawakev

compare(zawakev,mawake6);

Compare mawake7 with zawakev

compare(zawakev,mawake7);

Compare msleep4 with zsleepv

compare(zsleepv,msleep4);

Compare msleep5 with zsleepv

compare(zsleepv,msleep5);

Compare msleep6 with zsleepv

compare(zsleepv,msleep6);

Compare msleep7 with zsleepv

compare(zsleepv,msleep7);

Patient 7 BP

Load patient 7 data

load patient7-2ipt-v3.mat

Create data

z=iddata

(used bp data’,[used iso data’ used EP data’ used EVAL data’ used LMA data’],5);

126



www.manaraa.com

z.inputn=’ISO’;’EP’;’EVAL’;’LMA’;
z.outputn=’BP’;
Partition data

zawake=[z(319:346,:);z(367:414,:);z(434:460,:);z(495:507,:);
z(513:1140,:);z(1152:1166,:);z(2338:2367,:) ;z(2637:2990,:)];

zsleep=[z(1167:2337,:);z(2368:2636,:)];
zawakev=zawake(1:571);
zawakee=zawake(572:1143);
zsleepe=zsleep(1:720);
zsleepv=zsleep(721:1440);
Detrend

zawakee=detrend(zawakee);
zawakev=detrend(zawakev);
zsleepe=detrend(zsleepe);
zsleepv=detrend(zsleepv);
Find Order of Sleep

msleep=n4sid(zsleepe,1:15);
Find Order of Awake

mawake=n4sid(zawakee,1:15);
Impulse Response of Sleep Model

impulse(msleep,’sd’,3,’fill’);
Impulse Response of Awake Model

impulse(mawake,’sd’,3,’fill’);
Find Awake Model using n4sid 4 states

mawake4=n4sid(zawakee,1,’nk’,[1 1 0 0],’Focus’,’Simulation’)
[mawake4B,Da4] = BALREAL(mawake4);
Find Sleep Model using n4sid 4 states

msleep4=n4sid(zsleepv,1,’nk’,[1 1 0 0],’Focus’,’Simulation’)
[msleep4B,Ds4] = BALREAL(msleep4);
Find Awake Model using n4sid 5 states

mawake5=n4sid(zawakee,2,’nk’,[1 1 0 0],’Focus’,’Simulation’)
[mawake5B,Da5] = BALREAL(mawake5);
Find Sleep Model using n4sid 5 states

msleep5=n4sid(zsleepv,2,’nk’,[1 1 0 0],’Focus’,’Simulation’)
[msleep5B,Ds5] = BALREAL(msleep5);
Find Awake Model using n4sid 6 states
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mawake6=n4sid(zawakee,6,’nk’,[0 0 0 0],’Focus’,’Stability’)

[mawake6B,Da6] = BALREAL(mawake6);

Find Sleep Model using n4sid 6 states

msleep6=n4sid(zsleepe,6,’nk’,[0 0 0 0],’Focus’,’Stability’)

[msleep6B,Ds6] = BALREAL(msleep6);

Find Awake Model using n4sid 7 states

mawake7=n4sid(zawakee,7,’nk’,[0 0 0 0],’Focus’,’Stability’)

[mawake7B,Da7] = BALREAL(mawake7);

Find Sleep Model using n4sid 7 states

msleep7=n4sid(zsleepe,7,’nk’,[0 0 0 0],’Focus’,’Stability’)

[msleep7B,Ds7] = BALREAL(msleep7);

Compare models with zsleepv and zawakev

Compare mawake4 with zawakev

compare(zawakev,mawake4);

Compare mawake5 with zawakev

compare(zawakev,mawake5);

Compare mawake6 with zawakev

compare(zawakev,mawake6);

Compare mawake7 with zawakev

compare(zawakev,mawake7);

Compare msleep4 with zsleepv

compare(zsleepv,msleep4);

Compare msleep5 with zsleepv

compare(zsleepv,msleep5);

Compare msleep6 with zsleepv

compare(zsleepv,msleep6);

Compare msleep7 with zsleepv

compare(zsleepv,msleep7);

A.2 idgrey

BIS

Patient 7 on Patient 1

m1=idgrey(’patient’,[0;0;0;0],’c’);

mp1sleep=pem(m1,zsleepe);
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A1=mp1sleep.a;
B1=mp1sleep.b;
C1=mp1sleep.c;
D1=mp1sleep.d;
Patient 7 on Patient 2

m2=idgrey(’patient’,[0;0;0;0],’c’);
mp2sleep=pem(m2,zsleepe)
A2=mp2sleep.a;
B2=mp2sleep.b;
C2=mp2sleep.c;
D2=mp2sleep.d;
Patient 7 on Patient 5

m5=idgrey(’patient’,[0;0;0;0],’c’);
mp5sleep=pem(m5,zsleepe);
A5=mp5sleep.a;
B5=mp5sleep.b;
C5=mp5sleep.c;
D5=mp5sleep.d;
Patient 7 on Patient 6

m6=idgrey(’patient’,[0;0;0;0],’c’);
mp6sleep=pem(m6,zsleepe)
A6=mp6sleep.a;
B6=mp6sleep.b;
C6=mp6sleep.c;
D6=mp6sleep.d;
Patient 7 on Patient 3

m3=idgrey(’patient’,[0;0;0;0],’c’);
mp3sleep=pem(m3,zsleepe)
A3=mp3sleep.a;
B3=mp3sleep.b;
C3=mp3sleep.c;
D3=mp3sleep.d;
Patient 5 on Patient 1

m1=idgrey(’patient5’,[0;0;0;0],’c’);
mp1sleep=pem(m1,zsleepe);
A1=mp1sleep.a;
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B1=mp1sleep.b;
C1=mp1sleep.c;
D1=mp1sleep.d;
Patient 5 on Patient 2

m2=idgrey(’patient5’,[0;0;0;0],’c’);
mp2sleep=pem(m2,zsleepe)
A2=mp2sleep.a;
B2=mp2sleep.b;
C2=mp2sleep.c;
D2=mp2sleep.d;
Patient 5 on Patient 6

m6=idgrey(’patient5’,[0;0;0;0],’c’);
mp6sleep=pem(m6,zsleepe)
A6=mp6sleep.a;
B6=mp6sleep.b;
C6=mp6sleep.c;
D6=mp6sleep.d;
Patient 5 on Patient 7

m7=idgrey(’patient5’,[0;0;0;0],’c’);
mp7sleep=pem(m7,zsleepe)
A7=mp7sleep.a;
B7=mp7sleep.b;
C7=mp7sleep.c;
D7=mp7sleep.d;
Patient 5 on Patient 3

m3=idgrey(’patient5’,[0;0;0;0],’c’);
mp3sleep=pem(m3,zsleepe)
A3=mp3sleep.a;
B3=mp3sleep.b;
C3=mp3sleep.c;
D3=mp3sleep.d;
Patient 1 on Patient 7

m7=idgrey(’patient1’,[0;0;0;0],’c’);
mp7sleep=pem(m7,zsleepe)
A7=mp7sleep.a;
B7=mp7sleep.b;
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C7=mp7sleep.c;
D7=mp7sleep.d;
Patient 1 on Patient 6

m6=idgrey(’patient1’,[0;0;0;0],’c’);
mp6sleep=pem(m6,zsleepe)
A6=mp6sleep.a;
B6=mp6sleep.b;
C6=mp6sleep.c;
D6=mp6sleep.d;
Patient 1 on Patient 5

m5=idgrey(’patient1’,[0;0;0;0],’c’);
mp5sleep=pem(m5,zsleepe)
A5=mp5sleep.a;
B5=mp5sleep.b;
C5=mp5sleep.c;
D5=mp5sleep.d;
Patient 1 on Patient 2

m2=idgrey(’patient1’,[0;0;0;0],’c’);
mp2sleep=pem(m2,zsleepe)
A2=mp2sleep.a;
B2=mp2sleep.b;
C2=mp2sleep.c;
D2=mp2sleep.d;
Patient 1 on Patient 3

m3=idgrey(’patient1’,[0;0;0;0],’c’);
mp3sleep=pem(m3,zsleepe)
A3=mp3sleep.a;
B3=mp3sleep.b;
C3=mp3sleep.c;
D3=mp3sleep.d;
Patient 6 on Patient 1

m1=idgrey(’patient6’,[0;0;0;0],’c’);
mp1sleep=pem(m1,zsleepe);
A1=mp1sleep.a;
B1=mp1sleep.b;
C1=mp1sleep.c;
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D1=mp1sleep.d;
Patient 6 on Patient 5

m5=idgrey(’patient6’,[0;0;0;0],’c’);
mp5sleep=pem(m5,zsleepe)
A5=mp5sleep.a;
B5=mp5sleep.b;
C5=mp5sleep.c;
D5=mp5sleep.d;
Patient 6 on Patient 7

m7=idgrey(’patient6’,[0;0;0;0],’c’);
mp7sleep=pem(m7,zsleepe)
A7=mp7sleep.a;
B7=mp7sleep.b;
C7=mp7sleep.c;
D7=mp7sleep.d; Patient 6 on Patient 2

m2=idgrey(’patient6’,[0;0;0;0],’c’);
mp2sleep=pem(m2,zsleepe)
A2=mp2sleep.a;
B2=mp2sleep.b;
C2=mp2sleep.c;
D2=mp2sleep.d;
Patient 6 on Patient 3

m3=idgrey(’patient6’,[0;0;0;0],’c’);
mp3sleep=pem(m3,zsleepe)
A3=mp3sleep.a;
B3=mp3sleep.b;
C3=mp3sleep.c;
D3=mp3sleep.d;
Patient 3 on Patient 1

m1=idgrey(’patient3’,[0;0;0;0],’c’);
mp1sleep=pem(m1,zsleepe);
A1=mp1sleep.a;
B1=mp1sleep.b;
C1=mp1sleep.c;
D1=mp1sleep.d;
Patient 3 on Patient 5
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m5=idgrey(’patient3’,[0;0;0;0],’c’);
mp5sleep=pem(m5,zsleepv)
A5=mp5sleep.a;
B5=mp5sleep.b;
C5=mp5sleep.c;
D5=mp5sleep.d;
Patient 3 on Patient 7

m7=idgrey(’patient3’,[0;0;0;0],’c’);
mp7sleep=pem(m7,zsleepe)
A7=mp7sleep.a;
B7=mp7sleep.b;
C7=mp7sleep.c;
D7=mp7sleep.d;
Patient 3 on Patient 2

m2=idgrey(’patient3’,[0;0;0;0],’c’);
mp2sleep=pem(m2,zsleepe)
A2=mp2sleep.a;
B2=mp2sleep.b;
C2=mp2sleep.c;
D2=mp2sleep.d;
Patient 3 on Patient 6

m6=idgrey(’patient3’,[0;0;0;0],’c’);
mp6sleep=pem(m6,zsleepe)
A6=mp6sleep.a;
B6=mp6sleep.b;
C6=mp6sleep.c;
D6=mp6sleep.d;
Patient 2 on Patient 1

m1=idgrey(’patient2’,[0;0;0;0],’c’);
mp1sleep=pem(m1,zsleepe);
A1=mp1sleep.a;
B1=mp1sleep.b;
C1=mp1sleep.c;
D1=mp1sleep.d;
Patient 2 on Patient 5

m5=idgrey(’patient2’,[0;0;0;0],’c’);
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mp5sleep=pem(m5,zsleepe)
A5=mp5sleep.a;
B5=mp5sleep.b;
C5=mp5sleep.c;
D5=mp5sleep.d;
Patient 2 on Patient 7

m7=idgrey(’patient2’,[0;0;0;0],’c’);
mp7sleep=pem(m7,zsleepe)
A7=mp7sleep.a;
B7=mp7sleep.b;
C7=mp7sleep.c;
D7=mp7sleep.d;
Patient 2 on Patient 3

m3=idgrey(’patient2’,[0;0;0;0],’c’);
mp3sleep=pem(m3,zsleepe)
A3=mp3sleep.a;
B3=mp3sleep.b;
C3=mp3sleep.c;
D3=mp3sleep.d;
Patient 2 on Patient 6

m6=idgrey(’patient2’,[0;0;0;0],’c’);
mp6sleep=pem(m6,zsleepe)
A6=mp6sleep.a;
B6=mp6sleep.b;
C6=mp6sleep.c;
D6=mp6sleep.d;
Patient 1 MISO

m1=idgrey(’patient1MISO’,[0;0;0;1;1;1;1;1;1;1;1;1],’c’);
mp1sleep=pem(m1,zsleepe)
A1=mp1sleep.a;
B1=mp1sleep.b;
C1=mp1sleep.c;
D1=mp1sleep.d;
Patient 2 MISO

m2=idgrey(’patient2MISO’,[0;0;0;1;1;1;1;1;1;1;1;1],’c’);
mp2sleep=pem(m2,zsleepe)
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A2=mp2sleep.a;
B2=mp2sleep.b;
C2=mp2sleep.c;
D2=mp2sleep.d;
Patient 3 MISO

m3=idgrey(’patient3MISO’,[0;0;0;1;1;1;1;1;1;1;1;1],’c’);
mp3sleep=pem(m3,zsleepe)
A3=mp3sleep.a;
B3=mp3sleep.b;
C3=mp3sleep.c;
D3=mp3sleep.d;
Patient 5 MISO

m5=idgrey(’patient5MISO’,[0;0;0;1;1;1;1;1;1;1;1;1],’c’);
mp5sleep=pem(m5,zsleepe)
A5=mp5sleep.a;
B5=mp5sleep.b;
C5=mp5sleep.c;
D5=mp5sleep.d;
Patient 6 MISO

m6=idgrey(’patient6MISO’,[0;0;0;1;1;1;1;1;1;1;1;1],’c’);
mp6sleep=pem(m6,zsleepe)
A6=mp6sleep.a;
B6=mp6sleep.b;
C6=mp6sleep.c;
D6=mp6sleep.d;
Patient 7 MISO

m7=idgrey(’patient7MISO’,[0;0;0;1;1;1;1;1;1;1;1;1],’c’);
mp7sleep=pem(m7,zsleepe)
A7=mp7sleep.a;
B7=mp7sleep.b;
C7=mp7sleep.c;
D7=mp7sleep.d;
BP Patient 1 MISO

m1=idgrey(’patient1MISOBP’,[0;0;0],’c’);
mp1sleepBP=pem(m1,zsleepe)
A1=mp1sleepBP.a;
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B1=mp1sleepBP.b;
C1=mp1sleepBP.c;
D1=mp1sleepBP.d;
Patient 2 MISO

m2=idgrey(’patient2MISOBP’,[0;0;0],’c’);
mp2sleepBP=pem(m2,zsleepe)
A2=mp2sleepBP.a;
B2=mp2sleepBP.b;
C2=mp2sleepBP.c;
D2=mp2sleepBP.d;
Patient 3 MISO

m3=idgrey(’patient3MISOBP’,[0;0;0;0;-1],’c’);
mp3sleepBP=pem(m3,zsleepe)
A3=mp3sleepBP.a;
B3=mp3sleepBP.b;
C3=mp3sleepBP.c;
D3=mp3sleepBP.d;
Patient 5 MISO

m5=idgrey(’patient5MISOBP’,[0;0;0],’c’);
mp5sleepBP=pem(m5,zsleepv)
A5=mp5sleepBP.a;
B5=mp5sleepBP.b;
C5=mp5sleepBP.c;
D5=mp5sleepBP.d;
Patient 6 MISO

m6=idgrey(’patient6MISOBP’,[1;1;1;1;1;1],’c’);
mp6sleepBP=pem(m6,zsleepe)
A6=mp6sleepBP.a;
B6=mp6sleepBP.b;
C6=mp6sleepBP.c;
D6=mp6sleepBP.d;
Patient 7 MISO

m7=idgrey(’patient7MISOBP’,[0,0,0],’c’);
mp7sleepBP=pem(m7,zsleepv)
A7=mp7sleepBP.a;
B7=mp7sleepBP.b;
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C7=mp7sleepBP.c;
D7=mp7sleepBP.d;
function [A,B,C,D,K,x0] = patient1(par,T,aux)

A = [-.0041519 -.040075 -.031907 -.03907;0.020717 -0.084443 -.15326 -.24221;
-.00056058 -.0082201 .10342 .28553;.0047522 .0094695 -.5456 -.19459]

+[-0.0046989; 0.02576; 0.00038384; 0.48166]*[par(1) par(2) par(3) par(4)];
B = [-0.0046989; 0.02576; 0.00038384; 0.48166];
C = [136.01 -9.7696 2.3834 -0.97397];
D = zeros(1,1);
K = zeros(4,1);
x0 =[0;0;0;0];
T=5;
end
function [A,B,C,D,K,x0] = patient2(par,T,aux)

A = [-0.0026 -0.0279 -0.0025 -0.0244; 0.0177 -0.0864 0.0056 -0.2098; -0.0008
-0.0104 0.0066 0.1733; 0.0013 -0.0431 -0.1563 -0.1275]

+[0.0003; 0.0010 ;0.0015;0.0015]*[par(1) par(2) par(3) par(4)];
B = [-0.0046989; 0.02576; 0.00038384; 0.48166];
C = [237.2070 -11.6216 0.5634 -2.9660];
D = zeros(1,1);
K = zeros(4,1);
x0 =[0;0;0;0];
T=5;
end
function [A,B,C,D,K,x0] = patient3(par,T,aux)

A = [-.0010 -.0276 0.0235 .0076;0.0088 -0.0494 .1102 .0505; .0018 .0445 -
.1327 -.3432;.0004 -.0125 .2824 .0256]+[-0.0082; -0.0185; -0.0166; -0.0381]*[par(1)
par(2) par(3) par(4)];

B = [-0.0082; -0.0185; -0.0166; -0.0381];
C = [173.0765 -9.0676 2.5768 -2.4800];
D = zeros(1,1);
K = zeros(4,1);
x0 =[0;0;0;0];
T=5;
end
function [A,B,C,D,K,x0] = patient5(par,T,aux)
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A = [-.0046 -.0301 .0327 -.0146;.0070 -.1072 .1349 .1266;-.0054 -.0480 -.0139
.2888;.0058 -.0366 -.1753 -.0239]+[-0.0070; 0.0833; 0.1311; -0.0873]*[par(1)
par(2) par(3) par(4)];

B = [-0.0070; 0.0833; 0.1311; -0.0873];

C = [139.8580 -9.8886 0.4684 -0.5230];

D = zeros(1,1);

K = zeros(4,1);

x0 =[0;0;0;0];

T=5;

end

function [A,B,C,D,K,x0] = patient6(par,T,aux)

A = [-.0055 .0096 -.0862 .0357;.0039 -.0137 -.1087 .1693; .0118 -.0580 -.1745
.0230;.0001 -.0924 .1051 -.0576]+[0.0025; 0.0072; 0.0267; 0.0151]*[par(1) par(2)
par(3) par(4)];

B = [0.0025; 0.0072; 0.0267; 0.0151];

C = [137.6774 -8.9751 -5.8180 3.934];

D = zeros(1,1);

K = zeros(4,1);

x0 =[0;0;0;0];

T=5;

end

function [A,B,C,D,K,x0] = patient(par,T,aux)

A = [-.002193 -.03069 -0.00781 -0.01234;.0165 -.07587 -.07758 -.1197; -.0008685
.01699 -.01573 -.2734;.00157 .02533 .2479 .01591]+[-0.0016; -0.0078; -0.0118;
0.0082]*[par(1) par(2) par(3) par(4)];

B = [-0.0016; -0.0078; -0.0118; 0.0082];

C = [175.3789 -10.2103 -0.8136 0.3883];

D = zeros(1,1);

K = zeros(4,1);

x0 =[0;0;0;0];

T=5;

end

function [A,B,C,D,K,x0] = patient1MISO(par,T,aux)

A = [-.0041519 -.040075 -.031907 -.03907; 0.020717 -0.084443 -.15326 -
.24221; -.00056058 -.0082201 .10342 .28553;.0047522 .0094695 -.5456 -.19459];
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B = [-0.0046989 par(1) par(2) par(3); 0.02576 par(4) par(5) par(6); 0.00038384
par(7) par(8) par(9); 0.48166 par(10) par(11) par(12)];

C = [136.01 -9.7696 2.3834 -0.97397];
D = zeros(1,4);
K = zeros(4,1);
x0 =[0;0;0;0];
T=5;
end
function [A,B,C,D,K,x0] = patient2MISO(par,T,aux)

A = [-0.0026 -0.0279 -0.0025 -0.0244; 0.0177 -0.0864 0.0056 -0.2098;-0.0008
-0.0104 0.0066 0.1733;0.0013 -0.0431 -0.1563 -0.1275];

B = [0.0003 par(1) par(2) par(3); 0.0010 par(4) par(5) par(6); 0.0015 par(7)
par(8) par(9); 0.0015 par(10) par(11) par(12)];

C = [237.2070 -11.6216 0.5634 -2.9660];
D = zeros(1,4);
K = zeros(4,1);
x0 =[0;0;0;0];
T=5;
end
function [A,B,C,D,K,x0] = patient3MISO(par,T,aux)

A = [-.0010 -0.0276 0.0235 0.0076; 0.0088 -0.0494 0.1102 .0505;0.0018 0.0445
-0.1327 -0.3432; 0.0004 -0.0125 0.2824 0.0256];

B = [-0.0082 par(1) par(2) par(3); -0.0185 par(4) par(5) par(6); -0.0166 par(7)
par(8) par(9); -0.0381 par(10) par(11) par(12)];

C = [173.0765 -9.0676 2.5768 -2.4800];
D = zeros(1,4);
K = zeros(4,1);
x0 =[0;0;0;0];
T=5;
end
function [A,B,C,D,K,x0] = patient5MISO(par,T,aux)

A = [-0.0046 -0.0301 0.0327 -0.0146; 0.0070 -0.1072 0.1349 .1266; -0.0054
-0.0480 -0.0139 0.2888; 0.0058 -0.0366 -0.1753 -0.0239];

B = [-0.0070 par(1) par(2) par(3); 0.0833 par(4) par(5) par(6); 0.1311 par(7)
par(8) par(9); -0.0873 par(10) par(11) par(12)];

C = [175.3789 -10.2101 -0.8316 0.3883];
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D = zeros(1,4);
K = zeros(4,1);
x0 =[0;0;0;0];
T=5;
end
function [A,B,C,D,K,x0] = patient6MISO(par,T,aux)

A = [-0.0055 0.0096 -0.0862 0.0357; 0.0039 -0.0137 -0.1087 0.1693; 0.0118
-0.0580 -0.1745 0.0230; 0.0001 -0.0924 0.1051 -0.0576];

B = [0.0025 par(1) par(2) par(3); 0.0072 par(4) par(5) par(6); 0.0267 par(7)
par(8) par(9); 0.0151 par(10) par(11) par(12)];

C = [137.6774 -8.9751 -5.8180 3.9340];
D = zeros(1,4);
K = zeros(4,1);
x0 =[0;0;0;0];
T=5;
end
function [A,B,C,D,K,x0] = patient7MISO(par,T,aux)

A = [-0.0022 -0.0307 -0.0078 -0.0123; 0.0165 -0.0759 -0.0776 -0.1197;-0.0009
0.0170 -0.0157 -0.2734;0.0016 0.0253 0.2479 0.0159];

B = [-0.0016 par(1) par(2) par(3); -0.0078 par(4) par(5) par(6); -0.0118 par(7)
par(8) par(9); 0.0082 par(10) par(11) par(12)];

C = [175.3789 -10.2101 -0.8316 0.3883];
D = zeros(1,4);
K = zeros(4,1);
x0 =[0;0;0;0];
T=5;
end
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APPENDIX B

STATE-FEEDBACK MATLAB CODE

L1 Adaptive State Feedback control for Patient 1 Sedated

Reference

stepfinal = -15;
Reference system parameters

Am = Asleep4-Bsleep4*KS5;
Bm = Bsleep4;
Cm=Csleep4;
Dm=Dsleep4;
Patient Model A = Asleep4;
B=Bsleep4;
C =Csleep4;
D = Dsleep4;
x 0=Csleep4’*inv(Csleep4*Csleep4’)*17
Adaptive Law Parameters

Gamma=1000;
Proj max theta=15;
Proj min theta=-15;
Theta max=60;
eps Theta=.01;
Proj 0 theta=[0];
Q=2*eye(4);
P=lyap(Am’,Q);
Pb=P*B;
Control Law

k=0.5;
kg=(-1/(C*inv(Am)*B));
Tracking Error Stats
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load inputdata

load reference

load simdata

load trackingerror

rn=(norm(ref(2,:)-BIS(2,:)) ˆ 2)/(norm(ref(2,:)) ˆ 2)

Plot results

load inputdata

load reference

load simdata

load stateerror

load sigmadata

figure(1);

subplot(2,1,1);

hold on;

plot((1/60)*BIS(1,:),BIS(2,:),’b’);

plot((1/60)*ref(1,:),ref(2,:),’r’);

grid on;

title(’Patient 1’);

xlabel(’Time t [min]’)

ylabel(’BIS’)

legend(’simBIS’,’r(t)’);

subplot(2,1,2);

plot((1/60)*ISO(1,:),ISO(2,:),’b’);

hold on;

grid on;

xlabel(’Time t [min]’);

ylabel(’

L1 Adaptive State Feedback control for Patient 2 Sedated

Reference system parameters

Am = Asleep4-Bsleep4*KS5;

Bm = Bsleep4;

Cm=Csleep4;

Dm=Dsleep4ISO;
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Patient Model A = Asleep4;
B=Bsleep4;
C =Csleep4;
D = Dsleep4ISO;
x 0=Csleep4’*inv(Csleep4*Csleep4’)*16.15
Adaptive Law Parameters

Gamma=100000;
Proj max theta=1100;
Proj min theta=-1100;
Theta max=1100;
eps Theta=.01;
Proj 0 theta=0;
Q=2*eye(4);
P=lyap(Am’,Q);
Pb=P*B;
Control Law

k=.01;
kg=(-1/(C*inv(Am)*B));
Tracking Error Stats

load inputdata
load reference
load simdata
load trackingerror
rn=(norm(ref(2,:)-BIS(2,:)) ˆ 2)/(norm(ref(2,:)) ˆ 2)
Plot results

load inputdata
load reference
load simdata
load stateerror
load sigmadata
figure(1);
subplot(2,1,1);
hold on;
plot((1/60)*BIS(1,:),BIS(2,:),’b’);
plot((1/60)*ref(1,:),ref(2,:),’r’);
grid on;
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title(’Patient 2’);

xlabel(’Time t [min]’)

ylabel(’BIS’)

legend(’simBIS’,’r(t)’);

subplot(2,1,2);

plot((1/60)*ISO(1,:),ISO(2,:),’b’);

hold on;

grid on;

xlabel(’Time t [min]’);

ylabel(’

L1 Adaptive State Feedback control for Patient 3 Sedated

Reference system parameters

Am = Asleep4-Bsleep4*KS5;

Bm = Bsleep4;

Cm=Csleep4;

Dm=Dsleep4;

Patient Model

A = Asleep4;

B=Bsleep4;

C =Csleep4;

D = Dsleep4ISO;

x 0=Csleep4’*inv(Csleep4*Csleep4’)*16

Adaptive Law Parameters

Gamma=1000;

Proj max theta=20;

Proj min theta=-20;

Theta max=80;

eps Theta=.01;

Proj 0 theta=[0];

Q=2*eye(4);

P=lyap(Am’,Q);

Pb=P*B;

Control Law
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k=0.5;

kg=(-1/(C*inv(Am)*B));

Tracking Error Stats

load inputdata

load reference

load simdata

load stateerror

rn=(norm(ref(2,:)-BIS(2,:)) ˆ 2)/(norm(ref(2,:)) ˆ 2)

Plot results

load inputdata

load reference

load simdata

load stateerror

load sigmadata

figure(1);

subplot(2,1,1);

hold on;

plot((1/60)*BIS(1,:),BIS(2,:),’b’);

plot((1/60)*ref(1,:),ref(2,:),’r’);

grid on;

title(’Patient 3’);

xlabel(’Time t [min]’)

ylabel(’BIS’)

legend(’simBIS’,’r(t)’);

subplot(2,1,2);

plot((1/60)*ISO(1,:),ISO(2,:),’b’);

hold on;

grid on;

xlabel(’Time t [min]’);

ylabel(’

L1 Adaptive State Feedback control for Patient 5 Sedated

Reference system parameters

Am = Asleep4-Bsleep4*KS5;
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Bm = Bsleep4;
Cm=Csleep4;
Dm=Dsleep4ISO;
Patient Model

A = Asleep4;
B=Bsleep4;
C =Csleep4;
D = Dsleep4ISO;
x 0=Csleep4’*inv(Csleep4*Csleep4’)*17.4
Adaptive Law Parameters

Gamma=100000;
Proj max theta=75;
Proj min theta=-75;
Theta max=1000;
eps Theta=.01;
Proj 0 theta=[0];
Q=2*eye(4);
P=lyap(Am’,Q);
Pb=P*B;
Control Law

k=1;
kg=(-1/(C*inv(Am)*B));
Tracking Error Stats

load inputdata
load reference
load simdata
load trackingerror
rn=(norm(ref(2,:)-BIS(2,:)) ˆ 2)/(norm(ref(2,:)) ˆ 2)
Plot results

load inputdata
load reference
load simdata
load stateerror
load sigmadata
figure(1);
subplot(2,1,1);
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hold on;

plot((1/60)*BIS(1,:),BIS(2,:),’b’);

plot((1/60)*ref(1,:),ref(2,:),’r’);

grid on;

title(’Patient 5’);

xlabel(’Time t [min]’)

ylabel(’BIS’)

legend(’simBIS’,’r(t)’);

subplot(2,1,2);

plot((1/60)*ISO(1,:),ISO(2,:),’b’);

hold on;

grid on;

xlabel(’Time t [min]’);

ylabel(’

L1 Adaptive State Feedback control for Patient 6 Sedated

Reference system parameters

Am = Asleep4-Bsleep4*KS5;

Bm = Bsleep4;

Cm=Csleep4;

Dm=Dsleep4ISO;

Patient Model

A = Asleep4;

B=Bsleep4;

C =Csleep4;

D = Dsleep4ISO;

x 0=Csleep4’*inv(Csleep4*Csleep4’)*10

Adaptive Law Parameters

Gamma=100000000;

Proj max theta=70;

Proj min theta=-70;

Theta max=1000;

eps Theta=.01;

Proj 0 theta=[0];
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Q=2*eye(4);

P=lyap(Am’,Q);

Pb=P*B;

Control Law

k=.1;

kg=(-1/(C*inv(Am)*B));

Tracking Error Stats

load inputdata

load reference

load simdata

load trackingerror

rn=(norm(ref(2,:)-BIS(2,:))ˆ 2)/(norm(ref(2,:))ˆ 2)

Plot results

load inputdata

load reference

load simdata

load stateerror

load sigmadata

figure(1);

subplot(2,1,1);

hold on;

plot((1/60)*BIS(1,:),BIS(2,:),’b’);

plot((1/60)*ref(1,:),ref(2,:),’r’);

grid on;

title(’Patient 6’);

xlabel(’Time t [min]’)

ylabel(’BIS’)

legend(’simBIS’,’r(t)’);

subplot(2,1,2);

plot((1/60)*ISO(1,:),ISO(2,:),’b’);

hold on;

grid on;

xlabel(’Time t [min]’);

ylabel(’
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L1 Adaptive State Feedback control for Patient 7 Sedated

Reference system parameters

Am = Asleep4-Bsleep4*KS5;

Bm = Bsleep4;

Cm=Csleep4;

Dm=Dsleep4ISO;

Patient Model

A = Asleep4;

B=Bsleep4;

C =Csleep4;

D = Dsleep4ISO;

x 0=Csleep4’*inv(Csleep4*Csleep4’)*19

Adaptive Law Parameters

Gamma=1000;

Proj max theta=75;

Proj min theta=-75;

Theta max=1000;

eps Theta=.01;

Proj 0 theta=[0];

Q=2*eye(4);

P=lyap(Am’,Q);

Pb=P*B;

Control Law

k=1;

kg=(-1/(C*inv(Am)*B));

Tracking Error Stats

load inputdata

load reference

load simdata

load trackingerror

rn=(norm(ref(2,:)-BIS(2,:))ˆ 2)/(norm(ref(2,:))ˆ 2)

Plot results

load inputdata

load reference

load simdata
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load stateerror
load sigmadata
figure(1);
subplot(2,1,1);
hold on;
plot((1/60)*BIS(1,:),BIS(2,:),’b’);
plot((1/60)*ref(1,:),ref(2,:),’r’);
grid on;
title(’Patient 7’);
xlabel(’Time t [min]’)
ylabel(’BIS’)
legend(’simBIS’,’r(t)’);
subplot(2,1,2);
plot((1/60)*ISO(1,:),ISO(2,:),’b’);
hold on;
grid on;
xlabel(’Time t [min]’);
ylabel(’
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APPENDIX C

OUTPUT-FEEDBACK MATLAB CODE

L1 Adaptive Output Feedback control for Patient 1 Sedated

Reference system parameters

num = [1/30];
den = [1 1/30];
Patient Model

A = Asleep4;
B=Bsleep4;
C =Csleep4;
D = Dsleep4;
x 0=-Csleep4’*inv(Csleep4*Csleep4’)*17
Adaptive Law Parameters

Gamma=50000;
Proj max theta=100;
Proj min theta=-100;
Theta max=100;
eps Theta=.01;
Proj 0 theta=[0];
P=1
Control Law

omega = 0.001
Tracking Error Stats

load inputdata
load reference
load simdata
load trackingerror
rn=(norm(ref(2,:)-BIS(2,:))ˆ 2)/(norm(ref(2,:))ˆ 2)
Plot results
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load inputdata

load reference

load simdata

load stateerror

load sigmadata

load simdata1

figure(1);

subplot(2,1,1);

hold on;

plot((1/60)*BIS(1,:),BIS(2,:),’b’);

plot((1/60)*ref(1,:),ref(2,:),’r’);

grid on;

title(’Patient 1’);

xlabel(’Time t [min]’)

ylabel(’BIS’)

legend(’simBIS’,’r(t)’);

subplot(2,1,2);

plot((1/60)*ISO(1,:),ISO(2,:),’b’);

hold on;

grid on;

xlabel(’Time t [min]’);

ylabel(’

L1 Adaptive Output Feedback control for Patient 2 Sedated

Reference system parameters

num = [1/60];

den = [1 1/60];

Patient Model

A = Asleep4;

B=Bsleep4;

C =Csleep4;

D = Dsleep4;

x 0=-Csleep4’*inv(Csleep4*Csleep4’)*16.15

Adaptive Law Parameters
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Gamma=50000;
Proj max theta=100;
Proj min theta=-100;
Theta max=100;
eps Theta=.01;
Proj 0 theta=[0];
P=1
Control Law

omega = 0.002
Tracking Error Stats

load inputdata
load reference
load simdata
load trackingerror
rn=(norm(ref(2,:)-BIS(2,:))ˆ 2)/(norm(ref(2,:))ˆ 2)
Plot results

load inputdata
load reference
load simdata
load stateerror
load sigmadata
load simdata1
figure(1);
subplot(2,1,1);
hold on;
plot((1/60)*BIS(1,:),BIS(2,:),’b’);
plot((1/60)*ref(1,:),ref(2,:),’r’);
grid on;
title(’Patient 2’);
xlabel(’Time t [min]’)
ylabel(’BIS’)
legend(’simBIS’,’r(t)’);
subplot(2,1,2);
plot((1/60)*ISO(1,:),ISO(2,:),’b’);
hold on;
grid on;
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xlabel(’Time t [min]’);

ylabel(’

L1 Adaptive Output Feedback control for Patient 3 Sedated

Reference system parameters

num = [1/15];

den = [1 1/15];

Patient Model

A = Asleep4;

B=Bsleep4;

C =Csleep4;

D = Dsleep4;

x 0=-Csleep4’*inv(Csleep4*Csleep4’)*16

Adaptive Law Parameters

Gamma=50000;

Proj max theta=100;

Proj min theta=-100;

Theta max=100;

eps Theta=.01;

Proj 0 theta=[0];

P=1

Control Law

omega = 0.008

Tracking Error Stats

load inputdata

load reference

load simdata

load trackingerror

rn=(norm(ref(2,:)-BIS(2,:))ˆ 2)/(norm(ref(2,:))ˆ 2)

Plot results

load inputdata

load reference

load simdata

load stateerror
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load sigmadata

load simdata1

figure(1);

subplot(2,1,1);

hold on;

plot((1/60)*BIS(1,:),BIS(2,:),’b’);

plot((1/60)*ref(1,:),ref(2,:),’r’);

grid on;

title(’Patient 3’);

xlabel(’Time t [min]’)

ylabel(’BIS’)

legend(’simBIS’,’r(t)’);

subplot(2,1,2);

plot((1/60)*ISO(1,:),ISO(2,:),’b’);

hold on;

grid on;

xlabel(’Time t [min]’);

ylabel(’

L1 Adaptive Output Feedback control for Patient 5 Sedated

Reference system parameters

num = [1/30];

den = [1 1/30];

Patient Model

A = Asleep4;

B=Bsleep4;

C =Csleep4;

D = Dsleep4;

x 0=-Csleep4’*inv(Csleep4*Csleep4’)*17.4

Adaptive Law Parameters

Gamma=50000;

Proj max theta=100;

Proj min theta=-100;

Theta max=100;
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eps Theta=.01;

Proj 0 theta=[0];

P=1

Control Law

omega = 0.002

Tracking Error Stats

load inputdata

load reference

load simdata

load trackingerror

rn=(norm(ref(2,:)-BIS(2,:))ˆ 2)/(norm(ref(2,:))ˆ 2)

Plot results

load inputdata

load reference

load simdata

load stateerror

load sigmadata

load simdata1

figure(1);

subplot(2,1,1);

hold on;

plot((1/60)*BIS(1,:),BIS(2,:),’b’);

plot((1/60)*ref(1,:),ref(2,:),’r’);

grid on;

title(’Patient 5’);

xlabel(’Time t [min]’)

ylabel(’BIS’)

legend(’simBIS’,’r(t)’);

subplot(2,1,2);

plot((1/60)*ISO(1,:),ISO(2,:),’b’);

hold on;

grid on;

xlabel(’Time t [min]’);

ylabel(’
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L1 Adaptive Output Feedback control for Patient 6 Sedated

Reference system parameters

num = [1/30];

den = [1 1/30];

Patient Model

A = Asleep4;

B=Bsleep4;

C =Csleep4;

D = Dsleep4;

x 0=-Csleep4’*inv(Csleep4*Csleep4’)*10

Adaptive Law Parameters

Gamma=50000;

Proj max theta=100;

Proj min theta=-100;

Theta max=100;

eps Theta=.01;

Proj 0 theta=[0];

P=1

Control Law

omega = 0.004

Tracking Error Stats

load inputdata

load reference

load simdata

load trackingerror

rn=(norm(ref(2,:)-BIS(2,:))ˆ 2)/(norm(ref(2,:))ˆ 2)

Plot results

load inputdata

load reference

load simdata

load stateerror

load sigmadata

load simdata1

figure(1);

subplot(2,1,1);
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hold on;

plot((1/60)*BIS(1,:),BIS(2,:),’b’);

plot((1/60)*ref(1,:),ref(2,:),’r’);

grid on;

title(’Patient 6’);

xlabel(’Time t [min]’)

ylabel(’BIS’)

legend(’simBIS’,’r(t)’);

subplot(2,1,2);

plot((1/60)*ISO(1,:),ISO(2,:),’b’);

hold on;

grid on;

xlabel(’Time t [min]’);

ylabel(’

L1 Adaptive Output Feedback control for Patient 7 Sedated

Reference system parameters

num = [1/60];

den = [1 1/60];

Patient Model

A = Asleep4;

B=Bsleep4;

C =Csleep4;

D = Dsleep4;

x 0=-Csleep4’*inv(Csleep4*Csleep4’)*10

Adaptive Law Parameters

Gamma=50000;

Proj max theta=100;

Proj min theta=-100;

Theta max=100;

eps Theta=.01;

Proj 0 theta=[0];

P=1

Control Law
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omega = 0.004

Tracking Error Stats

load inputdata

load reference

load simdata

load trackingerror

rn=(norm(ref(2,:)-BIS(2,:))ˆ 2)/(norm(ref(2,:))ˆ 2)

Plot results

load inputdata

load reference

load simdata

load stateerror

load sigmadata

load simdata1

figure(1);

subplot(2,1,1);

hold on;

plot((1/60)*BIS(1,:),BIS(2,:),’b’);

plot((1/60)*ref(1,:),ref(2,:),’r’);

grid on;

title(’Patient 7’);

xlabel(’Time t [min]’)

ylabel(’BIS’)

legend(’simBIS’,’r(t)’);

subplot(2,1,2);

plot((1/60)*ISO(1,:),ISO(2,:),’b’);

hold on;

grid on;

xlabel(’Time t [min]’);

ylabel(’
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Checking stability of H(s)

Patient 1

ParaM=1/30;

ParaOmega=.008;

poly=ParaOmega*([0 1.359 1.362 -0.08081 0.00635 0]+ParaM*[0 0 1.359 1.362
-0.08081 0.00635])+ParaM*[1 .1798 .1461 .01316 .0001649 0];

roots(poly)

Patient 2

ParaM=1/60;

ParaOmega=.0001;

poly=ParaOmega*([0 -0.05594 -0.001404 -0.002921 0.0002398 0]+ParaM*[0
0 -0.05594 -0.001404 -0.002921 0.0002398])+ParaM*[1 .1798 .1461 .01316 .0001649
0];

roots(poly)

Patient 3

ParaM=1/60;

ParaOmega=.0001;

poly=ParaOmega*([0 1.2 0.1397 0.06413 0.0002461 0]+ParaM*[0 0 1.2 0.1397
0.06413 0.0002461])+ParaM*[1 .1575 .09489 .003838 2.527e-05 0];

roots(poly)

Patient 5

ParaM=1/15;

ParaOmega=.005;

poly=ParaOmega*([0 2.221 -0.2494 0.09021 0.002341 0]+ParaM*[0 0 2.221
-0.2494 0.09021 0.002341])+ParaM*[1 .1496 .06726 0.006355 5.131e-05 0];

roots(poly)
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Patient 6

ParaM=1/30;
ParaOmega=.02;
poly=ParaOmega*([0 -0.1836 0.1526 -0.003364 0.0005311 0]+ParaM*[0 0 -

0.1836 0.1526 -0.003364 0.0005311])+ParaM*[1 0.2513 0.02248 0.003408 2.944e-
05 0];

roots(poly)

Patient 7

ParaM=1/15;
ParaOmega=.01;
poly=ParaOmega*([0 0.188 -0.02198 0.0101 0.0005796 0]+ParaM*[0 0 0.188

-0.02198 0.0101 0.0005796])+ParaM*[1 0.0779 0.07254 0.005276 4.678e-05 0];
roots(poly)
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APPENDIX D

MATHEMATICAL BACKGROUND

D.1 L1 norm

The L1 gain of a BIBO stable proper SISO system is defined as

||H(s)||L1 =
∫

∞

0
|h(t)|dt (D.1)

where h(t) is the impulse response of H(s).

For a stable, proper m input by n output system, H(s), the L1-norm of H(s) is
given to be

||H(s)||L1 = max
i=1,...,n

(
m

∑
j=1

||Hi j(s)||L1) (D.2)

where Hi j(s) is the ith row, jth column element of H(s).

D.2 Projection Operator

The projection operator ensures that the parameter estimate θ̂(t) remains inside
the compact set Θ.

To use the projection operator, we consider a convex compact set with a smooth
boundary given by:

Θc , {θ ∈ Rn| f (θ)≤ c}, 0 ≤ c ≤ 1, (D.3)

where f : Rn → R is the following convex function:

f (θ) =
θ T θ −θ 2

max
εθ θ 2

max
(D.4)
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where θmax is a bound placed on the norm of the parameter θ and εθ is the con-
vergence tolerance. We let the true value of θ , given as θ∗, be in the set Θ0. The
projection operator is given by

Proj(θ ,y) ,


y if f (θ) < 0,

y if f (θ)≥ 0 and ∇ f T y ≤ 0

y− ∇ f
||∇ f ||

〈
∇ f T

||∇ f || ,y
〉

f (θ) if f (θ)≥ 0 and ∇ f T y > 0.

(D.5)

The projection operator in equation (D.5) does not change y if θ is in the set
Θ0 = {θ ∈ Rn| f (θ)≤ 0}. Whenever θ is in the set 0 ≤ f (θ)≤ 1}, if ∇ f T y > 0,
the projection operator Proj(θ ,y) subtracts a vector normal to the boundary of
Θc = {θ ∈ Rn| f (θ) = c} resulting in a smooth change from the original y vector
field to a tangent or inward vector field for c = 1. From this, it can be seen that
whenever θ̇(t) = Proj(θ(t),y(t)), then θ never leaves Θ1.
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